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In this study we explore the inference of identity of source using a 

two-dimensional feature vector. As an example, we study the use of 

the Bayesian framework for the estimation of the value of evidence 

of color measurements for identity of source of blue ballpoint pen 

inks. Univariate as well as bivariate analyses are carried out for color 

data that was acquired with a flatbed scanner. While this might not 

be the best method to discriminate inks, we will use it as an example 

to estimate what the value of the evidence is, however low or high it 

may be. It is hoped that this exercise is instructional, as a similar 

approach can readily be applied in other situations. 

 

1 Introduction 

 The study in this paper is about an example of an inference of identity of 

source [1] using a Bayesian approach [2]. Generally, discrimination or comparison 

methods give a score which is a measure for either similarity or difference. It seems 

most logical to have the score increase with increasing difference, because there is a 

finite limit on one side (score zero for no difference), while the difference has no limit 

on the other side (features can always be more different). But even if the opposite type 

of score has been chosen, the same univariate approach for the inference of identity of 

source remains applicable. 
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 For the present work, we will consider an example with a two-dimensional 

feature vector that characterizes the color of an ink. Color difference is defined as the 

(Euclidian) distance between two colors in this two-dimensional feature space. 

 We will carry out univariate analyses for the estimation of the evidential value 

for identity of source based on the comparison scores (color differences) of multiple 

ink traces from a single pen and single traces of multiple pens. We will also calculate 

the evidential value using bivariate methods, where we work with probability density 

functions (PDFs) for measuring the observed colors under either competing 

hypothesis regarding the source, thus bypassing the reduction to one dimension 

through a comparison score. 

 The inference of identity of source is the main topic of this study; non-

destructive methods for the comparison of inks have been described elsewhere [3-6]. 

 

2 Methods 

2.1 Reference ballpoint collection 

 For this study, 262 blue ballpoint pens from the collection of the Netherlands 

Forensic Institute (NFI) were used. Since the issue is whether or not the same specific 

instance of a pen was used, the collection should truly reflect the population of all 

pens, with each type of pen represented in proportion to its frequency amongst pen 

users. For the present study we will assume the collection to be representative of the 

relevant population. Though this is not sure for the present collection, it is not a 

limitation of the principle of our analysis. 

2.2 Preparation and imaging of the samples 

 Samples were prepared by writing lines with all ballpoint pens on a single 

sheet of paper. To get an impression of the intra-source (or within source) variation 

for a single ballpoint pen, 100 samples were written with the same ballpoint pen on 

the same sheet. The imaging was done by scanning all samples in one large, high 

resolution scan (1270 dpi, or pixels of 20×20 m), with a high quality scanner 

(CreoScitex Eversmart Jazz). After acquiring the image, it was sliced into a collection 

of images of all the separate samples. 
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2.3 Defining the feature vector 

 The analysis of the colors is analogous to that in Ref. [7], and is based on the 

three-dimensional color histogram (see Figure 1). This histogram shows the 

distribution of all colors present in an image in the RGB (red, green, and blue 

component) color space. 

Note how the colors of one and the same source vary wildly, extending from 

the spherical cloud of colors associated with the paper background (P) to the color of 

the pure ink. This is due to differences in ink coverage in the pixels in and along the 

edge of the ink line. For the purpose of discrimination however, the chosen feature 

vector should vary as little as possible for the same source, and as much as possible 

for different sources. 

 The spatial angle of the vectors from the background paper color (P) to the 

varying ink colors, varies much less than those colors themselves. Because of this 

minimized variation and the fact that different colored inks will give different spatial 

angles, these spatial angles were chosen as the feature vector. Defining the feature 

vector as the direction of the elongated cloud of colors associated with an ink makes 

the analysis much less sensitive to ink coverage and more sensitive to different inks. 

 To determine this direction we first determine the average RGB values for the 

paper in each image. This is done by finding the position of the peak associated with 

the paper color in the red component histogram of the image. All pixels with a red 

component within 2% of the peak position are averaged to give the average RGB 

value of the paper color. By averaging all pixels with a red component between 50 

and 130 (on a scale of 0 to 255), we also obtain an average RGB value associated with 

the ink. 

Our feature vector is defined by the spatial angles (x, y) of the vector from the 

average paper RGB value to that associated with the ink, relative to the RGB axes. 

 

3 Results 

 From here on we will often refer to traces from a source as colors, defined by 

their feature vector rather than by their RGB values. Figure 2 shows the intra-source 

(or within source) variation of the feature vector (ballpoint pen ink color) for one of 

the pens in a cluster of solid dots, while the open dots represent the inter-source (or 
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between source) variation of the feature vector. It is assumed that the intra-source 

variation is similar for all sources. 

 We define the relevant hypotheses for an ink comparison as follows: 

Hs : Colors a  and b


 represent samples that come from the same specific 

instance of a blue ballpoint. 

Hd : Color b


 represents a sample that comes from a random blue ballpoint, 

different from the ballpoint that led to a . 

3.1 Univariate approaches 

 We define color differences as Euclidian distances d (a comparison score) 

between the colors of two samples in the two-dimensional feature space. We can 

make histograms of the distances d between all possible pairs of colors for the intra-

source and the inter-source measurements. Strictly speaking we have only 50 

independent pairs for the 100 intra-source samples (and an analogous limitation exists 

for the inter-source samples), but we have chosen to use this approximation. From 

these histograms follow the probability density functions for measuring certain color 

differences, for intra-source as well as inter-source samples (see Figure 3a). By 

dividing the two PDFs we obtain the LR (likelihood ratio) associated with our 

hypotheses, as a function of the color difference between a  and b


. For reasons of 

symmetry and presentation we will work with the LLR (log likelihood ratio), which 

for evidence pointing in opposite directions has opposite signs and for neutral 

evidence equals zero (see Figure 3b, solid dots). 

If we assume our intra-source feature vectors to be normally distributed (with 

a standard deviation ), the PDF for color differences given Hs (same source) 

becomes a Rayleigh distribution of the form 
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that we can fit to the data. Using this fit we can extrapolate to some extent to find the 

LLR for color differences for which no intra-source data were measured (avoiding 

division by zero). The result can be seen in Figure 3b (open dots). 

 Kernel density estimation (KDE) can be used to obtain a continuous, smooth 

curve (see solid curves in Figure 3) for the inter-source data. With KDE, the PDF is 
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constructed as a sum of Gaussians around every inter-source color difference i, 

leading to a smoother PDF: 
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where  is a smoothing constant which was chosen as 0.003, which is close to the 

standard deviation  of the intra-source feature vectors in either dimension. 

 

 In reality of course, the LLR should not only depend on the color difference d, 

but also on the actually involved colors a  and b


, because the value of the evidence 

should depend on whether those colors are rare or common. To incorporate this 

information we derive a different PDF for the color differences given Hd (different 

source). This concept is usually referred to as anchoring, while the previous approach 

is called non-anchored. The PDF is now based on the distances from a  to all inter-

source feature vectors (anchoring to a ). 

 To obtain meaningful PDFs from this smaller set of color differences, we 

apply kernel density estimation again. Figure 4a shows the probability density 

functions for the inter-source measurements (using KDE) based on three different 

histograms: that of all possible distances (solid line), that of all distances to a common 

a  (dashed line), and that of all distances to a rare a  (dotted line). The associated log 

likelihood ratios (LLR) are shown in Figure 4b. 

 We will now calculate a two-dimensional LLR distribution as a function of 

measurement b


 given a certain measurement a . That way we can look at the 

univariate results in two dimensions, which will also allow us to compare with the 

results of the bivariate approach later. 

 Figure 5 shows the value of the LLR as a function of measurements b


 with 

given a , in 6 different situations. From top to bottom 3 univariate approaches are 

used. The results on the left side are for a common a  while those on the right are for a 

rare a . The graphs show lines of equal LLR, and cross sections along the vertical 

axes. 

 Figure 5a and 5b show the non-anchored univariate results using all inter-

source distances (compare Figure 3b). In Figure 5c and 5d, the univariate LLR results 

using all distances to a  ( a -anchored) are shown (compare Figure 4b). 
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 In a third univariate approach (not mentioned before), the distances between 

b


 and all inter-source measurements are used to create the probability density 

function. The results of this b


-anchored approach are shown in Figure 5e and 5f. 

3.2 Bivariate approaches 

 We will also calculate a two-dimensional distribution of LLR values as a 

function of b


 given a certain a  in two bivariate approaches. The evidence consists of 

the feature vectors of the first and second color measurement a  and b


:  .,baE
  

For continuous measurements the probabilities are replaced by probability density 

functions f so that 
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 Applying the rules of conditional probability we can write (for a derivation see 

the Appendix): 
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where we denote the true mean of the measurement on a source by 


, and we omit 

the symbols for the hypotheses and background information. 

 This equation is evaluated numerically to find the LR for a given a  as a 

function of b


. The probability density functions are represented by arrays that can 

easily be integrated numerically and displayed graphically. 

 We first calculate  f  by constructing the probability density function from 

three-dimensional Gaussian peaks associated with the feature vectors ip


 for every ink 

in our collection, using a smoothing constant   = 0.01 for kernel density estimation: 
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This distribution is graphically represented in Figure 6a. It corresponds to our 

expectation to measure a certain color if the source is randomly chosen. It is an 

approximation in the sense that for this study every ip


 is a single measurement, and 

not a true mean. 
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Next we evaluate  af . The Gaussian that determines it has the standard 

deviation  that was derived from the fit to the Rayleigh distribution earlier (Equation 

1). The resulting distribution is evaluated numerically and an example can be found in 

Figure 6b. 

We can now calculate  bf  for every b


 and with that and  af  and  f  we can 

integrate according to Eq. 4 to calculate the LLR as a function of b


. 

 If the inter-source variability is approximated by a normal distribution instead 

of a kernel density estimate, the calculation can be simplified, and numerical 

integration of Equation 4 is not needed [8]. 

 Figure 7 shows the results for both bivariate approaches. The inter-source 

variability is modeled by a bivariate normal distribution (see Figure 7a and 7b), or by 

a kernel density estimate (see Figure 7c and 7d). 

 

4 Discussion 

 The first univariate approach did not take into account that the LLR should not 

only depend on the color difference, but also on the actual values of a  and b


 

themselves. Therefore, the results in Figure 5a and 5b are essentially the same but 

centered around a different a . 

 In the second univariate approach the inter-source variation depends on a  but 

not on b


, which makes Figure 5c different from 5d, while both still consist of 

concentric circles (since a  is not varied). 

 For the more rare colors, the same color difference leads to a higher LLR for 

the colors coming from the same source, because there are fewer alternative sources 

that resemble the true source. For the more common colors those alternative 

candidates are available, which leads to an increase of the support for the hypothesis 

that the colors originated from different ballpoint pens (lowering the LLR). The cross 

sections given with Figure 5a to 5d are the same as the graphs shown earlier in Figure 

3b and 4b. 

 The third univariate approach is like the second one, but due to b


-anchoring, 

the inter-source variation now depends on b


 and not on a . The effect of the rarity of 

the colors is seen again in Figure 5e and 5f, but since the LLR is given as a function of 
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b


, we do not have concentric circles anymore. Please note that for this type of 

casework it does not matter which color you measure first, a  or b


. This symmetry is 

reflected in the results for common colors (Figure 5c and 5e), which are very similar. 

For rare colors however (with less data), the results can differ significantly, as seen in 

Figure 5d and 5f. The LLR in those graphs also seems overly sensitive with respect to 

the color difference d. 

 Two bivariate approaches were used to obtain Figure 7, with the inter-source 

variability modeled by a normal distribution (Figure 7a and 7b) and by a kernel 

density estimate (Figure 7c and 7d), respectively. The effect of the rarity of ink color 

a  is visible again, but without the hypersensitivity seen in Figure 5d and 5f. 

 To compare the performance of the various methods we can also look at the 

LLR values for intra-source comparisons (true pairs) and inter-source comparisons 

(false pairs). Ideally, the histogram for the true pair LLR values would be well-

separated from that for the false pair values. For the present study, we will plot instead 

a cumulative derivative of the histogram called the Tippett plot [9]. The Tippett plot 

gives the proportion of the LLR values greater than a value s, for cases corresponding 

to either hypothesis. 

 The bivariate approaches perform better than the univariate ones, though 

differences do not seem to be very large. For the false pairs the curves for the 

univariate approaches overlap, and so do the curves for the bivariate approaches. 

Differences can be seen in the inset of Figure 8. The bivariate method with normally 

distributed between-source variability performs better than the bivariate KDE method 

for the true pairs, but the latter performs better for the false pairs and overall as well. 

 

5 Conclusion 

 In many forensic fields, comparisons lead to one dimensional scores and 

univariate methods for calculating LLR values. While this simplifies calculations, it 

will not lead to the most accurate determination of the LLR, in particular for the less 

common feature vectors. The example given here of univariate and bivariate Bayesian 

analysis for the inference of identity of source for color measurements is meant to 

illustrate the different approaches. The bivariate methods were shown to have a better 

performance than the univariate methods. 
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 In a follow-up of this study we will explore more methods of judging the 

performance of LLR calculation methods and calibrating [10] their outcome. 

 

 

Appendix 

This derivation of Equation (4) follows pages 319 to 321 in Ref. [11]. 

The value of the evidence is defined as the likelihood ratio LR, with the two 

competing propositions denoted by Hs (same source) and Hd (different source) and the 

background information by I. 
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For continuous measurements the probabilities are replaced by probability density 

functions f so that 
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Applying the rules of conditional probability we can write: 
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because the probability density function for a  is independent of whether Hs or Hd is 

true: 

    .,, IHafIHaf ds

   (5) 

If Hd is true, then the first and second measurement a  and b


 are independent: 

    ,,,, IHbfIHabf dd

   (6) 

and so 
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In the following, we denote the true mean of the measurement on a source by 


, and 

we omit the symbols for the hypotheses and background information. 
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The numerator can be rewritten using the rules of total probability as before 

and Bayes’ theorem: 
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Applying the law of total probability and replacing summation with integration, we 

can write the denominator as: 
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We finally obtain 
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Figure 1 

Three-dimensional color histogram, showing the distribution of colors present in an 

image in the RGB (red, green and blue component) color space. The frequency of 

pixels in every histogram bin is indicated by the radius of the corresponding sphere. In 

this case, the colors come from an image of black and blue ballpoint pen ink on white 

paper. 
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Figure 2 

The inter-source (or between source) variation of the feature vector (ballpoint pen ink 

color), shown with open dots. The cluster of solid dots represents the intra-source (or 

within source) variation of the feature vector for one of the pens. 
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Figure 3a 

Probability density functions for color differences, which were derived from 

histograms of the distances between all possible pairs of colors for the intra-source 

(solid dots) and the inter-source measurements (solid squares). The solid lines 

represent the Rayleigh fit for the intra-source data, and the kernel density estimation 

result for the inter-source data. 

 

Figure 3b 

The LLR (log likelihood ratio) giving the increase of the support for Hs relative to Hd 

as a function of the color difference, as derived from dividing the probability density 

functions in Figure 3a (solid dots). Using the Rayleigh fit for the intra-source 

distribution of distances, we can extrapolate (open dots). Applying kernel density 

estimation for the inter-source distribution we get a continuous smooth result (line). 
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Figure 4a 

The probability density functions for the inter-source measurements (using KDE) 

based on 3 different histograms: that of all possible distances (solid line), that of all 

distances to a  for a common ink color (dashed line), and that of all distances to a  for 

a rare ink color (dotted line). 

 

Figure 4b 

The LLR (log likelihood ratio) based on the Rayleigh fit and the three probability 

density functions on the left. The line types correspond to those in Figure 4a. 
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Figure 5 

The LLR as a function of b


 and given a , in 6 different situations. From top to 

bottom, three univariate approaches are used. The results on the left side are for a 

common a  while those on the right are for a rare a . The graphs show lines of equal 

LLR, and a cross section along the vertical axis. The univariate approaches from top to 

bottom can be characterized as non-anchored, and anchored to a  and b


 respectively. 
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Figure 6a 

The probability density  f  based on kernel density estimation, where the axes are 

the same as in Figure 2, and the intensity represents the probability density. 

 

Figure 6b 

Example of the probability density  af  for 


 = [1.91, -2.31]. The axes are the 

same as in Figure 2, and the intensity represents the probability density. 
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Figure 7 

The LLR as a function of b


 and given a , in 4 different situations. In 7a and 7b, the 

inter-source variability is modeled by a normal distribution, while for the graphs 7c 

and 7d a kernel density estimate was used. The results on the left side are for a 

common a  while those on the right are for a rare a . The graphs show lines of equal 

LLR, and a cross section along the vertical axis. 
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Figure 8 

Tippett plots for the univariate methods: non-anchored (dashed line), a -anchored 

(dotted line), b


-anchored (dash-dotted line); and bivariate methods: with inter-source 

variability normally distributed (solid thin line), or approximated with KDE (solid 

thick line). 


