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More than just being a substrate, paper can also provide evidence for 

the provenance of documents. An earlier paper described a method to 

compare paper structure, based on the Fourier power spectra of light 

transmission images. Good results were obtained by using the 2D 

correlation of images derived from the power spectra as a similarity 

score, but the method was very computationally intensive. Different 

comparison algorithms are evaluated in this paper, using information 

theoretical criteria. An angular invariant algorithm turned out to be as 

effective as the original one but 4 orders of magnitude faster, making 

the use of much larger databases possible. 

 

Keywords 

forensic science, questioned documents, paper structure, Fourier analysis, information 

theoretical analysis, empirical cross-entropy 

                                                 

* Corresponding author 



2 

1 Introduction 

 

The production of paper starts with pulp on a sieve, and this step can leave 

behind traces of that sieve’s shape in the structure of the paper produced. To extract 

such traces spatial frequency analysis of light transmission images has been applied to 

various (often thin) types of paper with varying success in the past [1, 2, 3, 4, 5, 6, 7]. 

In a previous study [8] we used a high quality scanner which gave good light 

transmission images for common copy papers. With an improved resolution and 

feature extraction and comparison algorithm, we obtained excellent discrimination of 

paper structures, without having to make assumptions about the orientation of the 

paper. A technical validation of this method was carried out with 25 different 

common copy papers. 

To be able to evaluate the evidential value of paper structure comparisons one 

would need databases that are more representative of the population considered, and 

preferably much larger. The previous algorithm was computationally intensive, which 

made the use of larger databases practically impossible. It required finding the 

maximum correlation of 2D peak patterns (processed Fourier-transformed transmitted 

light images) as a function of their relative angle. This paper explores the possibility 

of removing the angular dependency and reducing the feature vector by one 

dimension.† This results in an enormous speed improvement, and makes the use of 

much larger databases possible. The question however is at which cost, since all the 

angular information is lost. Information theoretical criteria will be used for the 

evaluation and comparison of the performance of the previous algorithm with 2 

angular independent algorithms, focusing on their discriminative properties. 

Traditional methods to analyze and compare papers include those that look at 

dimensions, weight, color, fluorescent properties, and fiber content of the paper [9]. 

Other methods apply a wide range of analytical techniques to study the chemical and 

elemental composition of the paper [10, 11, 12, 13, 14, 15, 16]. It would be possible to 

combine the results from paper structure analysis with those of these other methods, 

though it should be noted that none of them currently provides the evidential value of 

the results of the analysis as a likelihood ratio. 

                                                 

† Ref. 7 seems to remove angular dependent information as well, while Refs 1 to 6 simply assume the 

orientation of the compared papers is the same. 
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2 Methods 

A collection of 25 common copy papers (white, multifunctional, 80 g/m²) from 

different manufacturers was used to evaluate the methods described in this paper. The 

papers and their sources were listed earlier [8]. The purpose of the collection is to aid 

the technical validation of the method to compare paper structure, and not to enable 

the assignment of likelihood ratios. If the latter were the purpose, paper should be 

collected from possible sources of e.g. threatening letters, not from possible paper 

producers. It is a commonly held misperception that one should go back to the factory 

and look at e.g. batch-to-batch variation, but the choice of the collection should be 

guided by the hypotheses in the case. If the relevant hypotheses concern the source of 

a threatening letter one should look at e.g. the paper in people’s printers. This 

automatically takes care of issues such as paper producers’ batch-to-batch variation 

and market share. 

 

2.1 Image acquisition 

Transmitted light images of 5×5 cm² areas of these papers were obtained with a 

high quality flatbed scanner (CreoScitex Eversmart Jazz) at 2540 dpi (10×10 m² 

pixels). To study the within-source and between-source variation, 5 areas were 

scanned for each side of every sheet of paper, with random orientation for each scan. 

The acquired 5000×5000 pixel images were Fourier transformed resulting in 2D 

power spectra which show the repetitive features in the paper structure (See Figure 1a 

and 1b). In addition to the 5×5 cm² paper sample size, experiments were carried out 

with sample sizes of 3×3, 2×2, and 1×1 cm² to study the influence of sample size on 

the performance of the comparison methods. 

 

2.2 Feature extraction 

2.2.1 2D feature extraction 
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Though a pattern is already apparent in the 2D power spectra, the overall 

graininess of those images makes them far from ideal for automatic comparison. 

Therefore, subsequent image processing was performed in MATLAB® Image 

Processing Toolbox (The MathWorks Inc., Natick, MA) to make the peaks stand out 

from the background and circular shaped. This processing is a key factor in the 

success of the feature extraction, the details of which were described in Ref. [8]. An 

example scan, power spectrum, and processed 2D peak pattern are shown in Figure 1. 

The processed 2D peak patterns formed the basis of all subsequent analysis. 

 

2.2.2 1D feature extraction 

To reduce the complexity of the problem and greatly speed up comparison we 

can drop the angular information. We did this by circular integration of the processed 

2D peak pattern. The radial profile P(r) was obtained from the pixels in the 2D peak 

pattern by summing a Gaussian for every pixel (with coordinates x,y), with its peak 

height equal to the value (intensity) of that pixel (Ax,y), its center at the distance rx,y of 

the pixel to the center of the power spectrum, and its width  chosen as 1: 

 

  ( )  ∑
    

 √  
 
 
(      )

 

       (1) 

 

An example of a 2D peak pattern and its angular invariant derivative is shown in 

Figure 2. 

 

2.3 Comparison 

2.3.1 2D correlation 

 

2D peak patterns can be correlated by pair-wise multiplying all corresponding 

pixels in both images, and adding up the results. To make the method robust to the 

orientation of the pattern in the paper, the correlation for two 2D peak patterns A and 

B is defined as a function of , the angle over which A is rotated before correlating it 

with B: 
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where R(A,) is the rotation of peak pattern A over angle , and the denominator is a 

normalization factor. Our comparison score is equal to the correlation at the angle for 

which the correlation is maximized (max). At that angle the compared peak patterns of 

both images overlap most. A complete lack of overlap of the peak patterns for all 

angles will give a minimum score of zero, while a maximum score of one will result 

when there is an angle for which the peak patterns overlap perfectly. 

Turning the paper over does not simply result in a mirrored transmission 

image, so the light transmission image depends on which side of the paper is up. As it 

is generally not obvious which side of the paper is the “wire” side (the side that was in 

contact with the sieve during paper production), the method was made robust to 

whichever side of the paper is up. Every sheet of paper has two images associated 

with it (front and back), and the final comparison score is defined by the square root‡ 

of the maximum of: 

 

     (                  )      (                ) and 

     (                 )      (                 ) , (3) 

 

which will give us a final comparison score between 0 and 1. 

 

2.3.2 1D profile correlation 

 

2D peak patterns can be reduced to angle independent 1D profiles P(r), 

described by vectors P. Profiles PA and PB can then be compared by calculating their 

correlation as a normalized dot product: 
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√     √     
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‡ The square root was erroneously missing in Ref. [8]. 
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Again, we don’t know which side of a paper is the front and therefore the final 

score is calculated as the maximum of: 
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 and (5) 

 
    (                )      (                ) 

 
 

2.3.3 1D profile RMS 

 

The comparison of the profiles can also be based on a measure for their 

difference: 
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The final score is the square root of the minimum of: 
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3 Results and discussion 

3.1 Empirical distributions of within- and between-source scores 

 

The presented methods for comparing paper structure yield a discriminating 

score for each comparison of sheets of paper. Such discriminating scores will be 

called same-source or within-source scores when the comparison is performed 

between objects from the same source (in our case, the same brand and pack of 
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paper). Alternatively, scores will be called different-source or between-source scores 

when the comparison is performed between objects coming from different sources (in 

our case, from different brands). 

The scores given by the proposed methods were not used to compute 

likelihood ratios, because there is a need of selecting proper population data for such a 

likelihood ratio computation, which is out of the scope of this work. As a 

consequence, our scores cannot be interpreted in a probabilistic way. In this situation, 

a relevant measure of performance of a given set of scores should be related to their 

discriminating power, understood as the ability of the scores to discriminate among 

same-source comparisons and different-source comparisons. This discriminating 

power evaluates the degree of relative separation among the distributions of same-

source and different-source scores, regardless of their absolute range of variation. 

Figure 3 shows the empirical distributions of the within- and between-source 

scores in the form of histograms, for all the sample sizes mentioned in Section 2.1 and 

all the comparison methods described in Section 2.3. They illustrate the separation 

between same-source and different-source scores for all paper sizes and comparison 

methods. It is clearly seen that the overlap of same- and different-source scores is 

much higher for 1×1 paper sizes, which makes sense: as the paper size gets smaller, 

the amount of the information compared is lower and the discriminating power of the 

technique decreases, and in the case of an extremely small paper size such 

discriminating power should tend to be extremely poor. 

This representation may be illustrative in some situations where there is a clear 

difference in discriminating power in different scenarios. However, by the 

visualization of such histograms the degree of overlap among such score distributions 

cannot be easily distinguished for many of the presented experiments. For instance, it 

is unclear in Figure 3 which comparison method presents a better discrimination for 

the 5×5 paper size, since it is hard to qualitatively judge the degree of overlap in the 

three cases. 
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3.2 Measuring discriminating power with DET graphs 

 

In order to get a deeper insight into the comparative discriminating power of 

different sets of scores, Detection Error Tradeoff (DET) graphs are a useful 

performance evaluation tool, extensively used in fields such as speaker recognition or 

biometrics [17]. Figure 4 shows several examples of DET curves, which are 

essentially the same as ROC curves (Receiver Operating Characteristic), but using 

Gaussian-warped axes. DET graphs are interpreted as follows. Imagine that a decision 

threshold θ is set for the discriminating scores, in the sense that all the scores over the 

threshold will be decided to come from a same-source comparison, and all the scores 

below that threshold will be decided to come to a different-source comparison§. If the 

same-source and different-source distributions of the scores overlap, there will be 

some values of the threshold θ for which there will be false-positive scores (different-

source scores higher than the threshold, also known as false acceptances) and false-

negative scores (different-source scores lower than the threshold, also known as false 

rejections). The DET curve represents the false acceptances vs. the false rejections for 

any value of the threshold θ. Moreover, and as opposed to ROC curves, the axes of a 

DET curve are Gaussian-warped, meaning that if the same-source and different-

source scores have a Gaussian distribution, their DET curve will be a straight line. 

DET curves give an easy way of comparing discriminating power among different 

experimental sets of scores. As a rule of thumb: the closer the curve is to the origin, 

the better the discriminating power of the method. 

DET curves in Figure 4 show the discriminating power of the different 

comparison methods presented in this work (2D correlation, 1D correlation and RMS) 

for different paper sizes. The organization of the curves allows easy comparison of the 

discriminating power of comparisons using different paper sample sizes for each 

comparison method. It is expected that the discriminating power increases (i.e., the 

DET curve gets closer to the origin of coordinates) with increasing paper sample size. 

It is clearly seen that this is the case for 1D correlation and RMS comparison 

                                                 

§ We do not mean to suggest that we actually want to generate decisions, we are only interested in the 

discrimination power of the generated scores. This example assumes a similarity measure, as used in 

the first 2 methods. For difference measures the threshold operates in the opposite way. 
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methods. However, for 2D correlation the 3×3 paper size presents a slightly better 

discriminating power than the 5×5 paper size. Though this is somewhat surprising, the 

difference in the performance with those two paper sizes is small. It seems that the 2D 

correlation method captures enough discriminating information with more limited 

amounts of paper. This is in accordance with the fact that the discriminating power of 

the 2D correlation method tends to be better than for the rest of methods when the 

paper sizes are limited (2×2 and 1×1). Therefore, 2D correlation seems to be a more 

robust method when the paper size is limited. 

Figure 5 shows the DET curves of the different proposed scoring methods for 

the two largest paper sample sizes analyzed (3×3 and 5×5), which clearly present the 

best discriminating power. It is seen that, for 3×3 paper size, the 2D correlation 

method outperforms the rest, because it seems to better exploit limited information by 

the use of two-dimensional features. However, this also implies a much higher 

computational burden. Fortunately, it is seen that for the 5×5 paper size all the scoring 

methods behave quite similarly. This is a quite desirable effect, which allows the use 

of much computationally lighter techniques without loss of discriminating power, if 

the paper size is sufficiently large. In forensic casework, a paper sample size of 5×5 

cm² is reasonable for many cases. 

 

3.3 Information theoretical analysis with ECE graphs 

 

In this section, an information-theoretical analysis is applied to the comparison 

scores obtained. This analysis is based on a magnitude called Empirical Cross-

Entropy (ECE), which has been extensively described in [18] and has been used in 

other forensic disciplines such as speaker recognition [18, 19] or glass analysis [20, 

21]. As a general rule, the higher the value of ECE, the worse the performance of the 

method that produced the set of scores under analysis will be. ECE is derived from 

statistical literature concerning strictly proper scoring rules [22], and it is typically 

represented in a so-called ECE graph [18], which is intended to measure both the 

discriminating power and the calibration of a set of scores computed from an 

experimental database. Figure 6 shows an example of such an ECE graph, where three 

curves are represented: 
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 ECE (dotted curve): it measures the overall performance (discriminating power 

plus calibration) of the set of scores under analysis. This is the global measure of 

performance if the scores are intended to have a probabilistic interpretation, 

typically in the form of log-likelihood ratios measuring the weight of the evidence 

[18]. 

 Calibrated ECE (solid curve): this curve measures the ECE of a calibrated set of 

scores obtained from the scores under analysis. It can be demonstrated that this 

curve measures the discriminating power of the set of scores in an information-

theoretical way [18, 23], as will be detailed below. The lower the value of the 

Calibrated ECE, the better the discriminating power of the set of scores. 

 Neutral Reference (dashed curve): this is the ECE of a set of scores having null 

discriminating power, i.e., a set of scores having all the same value (zero) either 

for same-source or for different-source comparisons. This is taken as a theoretical 

floor of performance: the lower the ECE of the set of scores is with respect to the 

Neutral Reference, the better the scores’ performance. 

 

The information-theoretical interpretation is as follows: if the evidence yields 

no information at all in the inferential process in a case, then the performance in terms 

of ECE will be the Neutral Reference. Therefore, the more information the forensic 

evidence gives on average among different comparisons, the lower will be the ECE 

curve with respect to the neutral reference. Moreover, the discriminating power of the 

scores at hand is given by the Calibrated ECE curve (solid curve in Figure 6), 

because, once calibrated, the loss of information of the scores in the experimental set 

is only due to their non-perfect discriminating power (a proof for this can be found in 

[22]). 

In our case, the scores are not to be interpreted as likelihood ratios, but as a set 

of discriminating scores. Therefore, the relevant information about the performance of 

the set of scores given by the ECE graphs is the discriminating power. The Calibrated 

ECE measures the loss of information about the true hypothesis in a comparison due 

to the non-perfect discriminating power, and is thus a measure for that discriminating 

power. 

Note that ECE and Calibrated ECE are measured for all the possible values of 

the prior probabilities, which are not within the province of the forensic scientist. 
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Therefore, by means of ECE analysis the prior probability is not stated, but its value is 

considered an unknown parameter in the x-axis of the ECE graph, which represents 

the logarithm of the prior odds. Thus, the forensic scientist has a tool to measure the 

discrimination performance of the scores for all possible prior probabilities involved 

in the inferential process, assessing the amount of information that could be gained if 

likelihood ratios are to be computed using such scores. There is freely available 

software in MatlabTM for easily generating ECE graphs from a set of scores or log-

likelihood ratios [24]. 

Although Calibrated ECE and DET graphs both measure discriminating 

power, there are several advantages to the use of Calibrated ECE rather than DET 

graphs: 

 

 The value of the prior probability is explicitly shown in Calibrated ECE graphs 

along the horizontal axis (the prior log-odds). However, in DET graphs, this 

information is lost: one may know which are the possible false acceptance and 

false rejection values, but the decision threshold leading to those values, which in 

a Bayesian framework will depend on the prior probabilities [17], cannot be 

known from the graph. 

 The interpretation of the Calibrated ECE in terms of information may be helpful 

when explaining it, since it considers information present in the evidence analyzed 

by the method in use. As information theory considers that a reduction of the 

uncertainty is due to information, this interpretation may naturally be used in the 

probabilistic LR-based framework for the evaluation of forensic evidence. With 

this aim, we plan to extend this information-theoretical framework in the future. 

 DET graphs consider decisions and their corresponding errors (false acceptance 

and false rejection) as a measure of discrimination performance, which makes it 

difficult to integrate them in a probabilistic framework. Although it is a fair way 

of expressing discriminating power in many contexts, it may seem controversial in 

forensic science. In the forensic context, taking decisions is the province of the 

trier of fact, as the trier of fact will have all the information in a case, unlike the 

forensic scientist. It should be clear that even when decision errors are used as a 

performance measure of a method, that method does not actually make decisions 

in the evidence evaluation process. Using Calibrated ECE graphs any such 
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confusion is avoided, because the discrimination performance is not interpreted in 

terms of decision error rates but as information given by the evidence. 

 

In Figure 7, Calibrated ECE graphs are shown, measuring the discriminating 

power of each of the different comparison methods proposed. It is clearly shown that 

in all cases except for the 1×1 paper size the information gain of the scores is very 

significant, because there is a dramatic reduction of the Calibrated ECE curve with 

respect with the Neutral Reference. This is not the case of the 1×1 paper size, which 

presents a quite limited reduction of the Calibrated ECE curve, which means that the 

capability of such scores to give information is limited. Also, the same effects as for 

the DET curves of Figure 4 are observed in the Calibrated ECE curves. First, for 2D 

correlation the Calibrated ECE for the 3×3 paper size is lower than for the 5×5 paper 

size, indicating that this comparison method more efficiently obtains the information 

contained in reduced paper sample sizes (at the cost of a much higher computational 

burden). This does not happen for 1D correlation and RMS scoring techniques, for 

which a reduction in paper size means a significant degradation of the discriminating 

power evidenced by a much higher Calibrated ECE curve. 

Finally, Figure 8 clearly shows that the Calibrated ECE of the three 

comparison methods is similar for the 5×5 paper size, indicating that such scores will 

potentially give the same amount of information when they will be used for evidence 

evaluation. Moreover, it is seen that for reduced paper sizes like 3×3, the 

discriminating power degrades significantly for 1D correlation and RMS with respect 

to 5×5, but not for 2D correlation. Therefore, 2D correlation presents a better 

performance for reduced paper sizes and also more robustness in this situation. 

However, if the amount of paper is sufficiently large (e.g., 5×5 paper size) then all 

scoring methods are comparable. 

 

3.4 Comparison of computational speed 

 

The 2D correlation method involves 180 correlations of 566×566 matrices 

(summation of the products of all corresponding elements), but also the rotation of the 

matrices. However, the method can be optimized for speed by first correlating scaled 

down versions of the matrices (142×142) and rotating by 3 degrees instead of 1 
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degree. By using these results only 3 correlations are necessary at the full scale, to 

obtain the same results as before at a much higher speed. 

The 1D profile correlation method is much faster, not only because the data 

has one dimension less, but also because only one correlation needs to be performed 

(with about 3000 elements), due to the angular independence. The same holds for the 

1D profile RMS method. 

A comparison using the full 2D correlation method took about 65 seconds, and 

the optimized version was 28 times faster at 2.3 seconds. But 1D profile correlation 

comparisons took only 0.11 ms, comparable to 0.12 ms for the 1D profile RMS 

method. Both 1D methods are 4 orders of magnitude faster than the optimized 2D 

correlation method. 

 

4 Conclusion 

 

In this paper we compared several forensic comparison methods for the 

structure of paper. We assessed their discriminating performance with DET graphs, as 

well as with an information theoretical analysis using ECE graphs. For reduced paper 

sample sizes, the 2D correlation method performs a bit better than the 1D profile 

correlation and the 1D profile RMS method. But for sufficiently large paper sample 

sizes, the 1D profile correlation and especially the 1D profile RMS method have equal 

performance as the 2D correlation method. The 1D methods are faster than the 2D 

method by 4 orders of magnitude which makes them ideally suited for use with much 

larger databases, that are much more representative of actual populations of paper. 

The fast methods will allow us to build those large databases and determine 

comparison scores which can then be interpreted probabilistically, to yield evidential 

values for the same-source and different-source hypotheses. 
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Figure 1 

(a) Transmitted light image showing the structure of a paper; (b) power spectrum of 

the two-dimensional Fourier transform of the transmitted light image; (c) grayscale 

dilation of the power spectrum image and removal of its center; and (d) top-hat 

filtered version of the previously dilated image, giving the final 2D peak pattern. The 

images have been rescaled in size and contrast for clarity. 
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Figure 2 

A radial profile as obtained from circularly integrating the pixels of the 2D peak 

pattern. This profile is invariant with respect to the orientation of the peak pattern, but 

also loses all other angular information. 
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Figure 3 

Empirical distributions of within-source scores (dotted curves) and between-source 

scores (solid curves) in the form of histograms, for all the comparison methods 

presented in this paper, and paper sample sizes of 1×1, 2×2, 3×3, and 5×5 cm². 
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Figure 4 

DET (Detection Error Tradeoff) graphs for the various comparison methods, with the 

various curves giving the results for different paper sample sizes. 
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Figure 5 

DET graphs for paper sample sizes of 3×3 and 5×5 cm², with the various curves 

giving the results for different comparison methods. 
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Figure 6 

An example of an Empirical Cross-Entropy (ECE) graph, with the ECE of the scores 

(dotted curve), the Calibrated ECE of the scores (solid curve), and the Neutral 

Reference (dashed curve) which is the ECE of a non-informative system which gives 

the same scores for same-source and for different-source comparisons. 
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Figure 7 

ECE graphs for the various comparison methods and paper sample sizes, grouped by 

comparison method. Shown are: the ECE of the scores (dotted curves), the Calibrated 

ECE of the scores (solid curves), and the Neutral Reference (dashed curves). 
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Figure 8 

ECE graphs for the various comparison methods and paper sample sizes of 3×3 and 

5×5 cm², grouped by paper sample size. The various curves are displayed as in Figure 

7. 


