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1 Introduction 

Forensic practice is more and more under scrutiny, both from the general public and the 

scientific community. Press reports about forensic examination in criminal cases regularly 

question the scientific foundation of forensic science and challenge the results of its analysis 

and interpretation [Wash15]. In 2016, a report from the US President’s Council of Advisors 

on Science and Technology appeared, entitled “Forensic Science in Criminal Courts: 

Ensuring Scientific Validity of Feature-Comparison Methods” [PCAST16]. This report 

emphasizes the importance of the validity of methods for the credibility of forensic science. 

In their 2017 Annual Report, the UK forensic science regulator also stressed the importance 

of the validity of the methods in the accreditation process: 

“The accreditation system is predicated on organisations being: a) accountable for 

the quality of their work and, b) able to demonstrate through regular audit and 

through evidence of staff competence and method validity that they are sustainably 

competent to produce reliable results” [ForSciReg18]. 

The forensic community is currently actively developing and implementing quality 

assurance, by establishing worldwide harmonized minimum quality standards. Such 

standards can be used to demonstrate the scope of validity, the reliability and the adequacy of 

the methods applied to the data collected in forensic casework. The validation and 

accreditation of instrumental and automatic methods used for forensic analysis is well-studied 

and reflected in the scientific literature, and their harmonization and standardization are 

already in progress at the regional level, in Europe (European Network of Forensic Science 

Institutes, ENFSI [ENFSI14]), in the US (Scientific Working Group for Forensic Analysis of 

Chemical Terrorism/Threats SWGFACT [SWGFACT05]), in Australia and New Zealand 

(Australian and New Zealand Policing Advisory Agency and National Institute of Forensic 

Science, ANZPAA NIFS and Standards Australia [ST-AU12]), and soon globally 

(International Organization for Standardization, ISO [ISO21043]). 

This Chapter addresses the validation of automatic likelihood ratio methods for forensic 

evidence evaluation. 
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1.1 Scope 

In forensic evidence evaluation practitioners assign a strength of evidence to forensic 

observations and analytical results, in order to address hypotheses at source or activity level 

[Cook98]. This assignment is based on the practitioner’s assessment and increasingly on the 

computations of automatic likelihood ratio (LR) methods. 

This chapter focuses on the validation of automatic methods1 developed to assign a strength 

of evidence at source level to the analytical results originating from the comparison of 

distinctive features of 2 specimens: a trace or mark of an unknown source and a reference 

specimen of a known source [Meuwly06, Robertson16]. Usually, a trace or mark is produced 

under the uncontrolled conditions of a criminal activity while a reference specimen is 

produced under controlled and more ideal conditions. 

We will review some of the performance characteristics needed to accomplish any validation 

process, and we will give special attention to the calibration of likelihood ratios, because of 

its importance and its relative novelty in forensic interpretation. Throughout this chapter, we 

will follow a Bayesian interpretation of probability [Lindley06], and the recent guideline for 

evaluative reporting in forensic science in Europe [ENFSI15]. 

1.2 Aim 

The main aim of this Chapter is to offer guidance to forensic practitioners assessing the scope 

of validity and applicability of automatic likelihood ratio methods, when implementing a new 

and non-standard method in forensic practice. These are essential steps towards the 

demonstration that such a method provides results that are fit for their intended use and allow 

it to be accredited and used in forensic casework. The validation and accreditation of 

automatic forensic evaluation methods serves several purposes. Primarily, it enables the 

demonstration of compliance with the quality standards adopted globally [ISO17025, 

ILACG19], specifically the way in which specimens are handled, what methods are used and 

how the results are interpreted. Beyond that, scientific and transparent validation of new and 

non-standard forensic methods favors their acceptance within the forensic community. 

 
1
 Currently the validation of human-based interpretation methods focuses mainly on competence assessment. 

In the future it is desirable that the validation also addresses performance assessment, and the methods 

described in this chapter are also suitable for this purpose. 
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Accreditation enables the legal community to recognize the methods’ merits and whether or 

not a method works reliably under forensic conditions. 

Another aim of this chapter is to elaborate on the concept of calibration as a performance 

characteristic for likelihood ratios. We will justify its critical importance in the validation 

process. 

1.3 Structure 

This chapter is structured as follows. In Section 2 a review of the most important standards 

for validation is given, along with the concepts of performance characteristics, performance 

metrics and validation criteria, which constitute the validation process. The approach for the 

measurement of performance of the methods under validation is developed in Section 3. 

Section 4 and 5 describe the primary and secondary characteristics used to assess the 

performance of automatic forensic evaluation methods. The chapter ends with our 

conclusions in Section 6. 

2 Validation process 

2.1 Standardization 

The ISO/IEC 17025:2017 standard [ISO17025] is used worldwide as one of the main bases 

for the accreditation of forensic service providers carrying out laboratory activities, while 

some more specifically forensic ISO standards are currently in development [Wilson18]. In 

its Clause 7.2.2.1 the ISO/IEC 17025:2017 standard specifies that non-standard methods, 

laboratory-developed methods and standard methods used outside their intended scope or 

otherwise modified need to be validated. 

Likelihood ratio methods used for forensic evaluation can be considered as non-standard in 

two aspects. Firstly because they are laboratory-developed, and secondly because they 

address forensic evaluation from an automatic perspective, when forensic evaluation is 

generally only considered as an opinion formed by a practitioner. 

In its Section 7.8.7.1 the ISO/IEC 17025:2017 standard specifies that: 
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“only personnel authorized for the expression of opinions and interpretations release 

the respective statement”, 

considering this step exclusively as a human competence. 

A similar approach had already been pursued in 2010 by the Dutch Accreditation Council in 

its explanation of the ISO/IEC 17025:2005 standard. In its Section 3.2, the criteria to assess 

the competence of laboratories to express opinions and interpretations are listed as follows: 

“(1) examining the implementation of the procedures and practices, (2) examining the 

adequacy of the competence criteria, (3) verifying qualifications, experience, training 

and knowledge of personnel, (4) examining the adequacy of mechanisms in place to 

monitor the competence of personnel, (5) examining reports where opinions and 

interpretations have been expressed, (6) examining records showing the basis on 

which opinions and interpretations are based, (7) using other appropriate assessment 

techniques”. 

A similar approach is also pursued in Section 4.8.3 of the ILAC- G19:08/2014 document 

[ILACG19] “Modules in a Forensic Science Process”: 

“personnel interpreting results shall have been assessed and deemed competent 

before reporting statements including interpretation and opinions of results and 

findings”. 

In its Section 3.10 it also specifies that 

“interpretations of results and findings shall be based on robust studies and 

documented procedures”, 

and in its Section 3.12 it states that 

“where software is used it shall be demonstrated as being fit for purpose. This may be 

a verification check of the software functionality, for example, the use of a 

spreadsheet to calculate values, or could be as part of the more wide reaching 

validation of the forensic science process in which the software is used, for example, 

the use of databases for matching specific characteristics”. 

But neither the ISO/IEC 17025:2017 standard nor the ILAC-G19:08/2014 document 

explicitly consider automatic interpretation methods for forensic evaluation, or the fact that 
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these methods require a validation based on their performance, just as instrumental analytical 

methods require validation. 

2.2 Validation of theoretical and empirical aspects 

Validation can address the theoretical or empirical aspects of the LR method. The validation 

of the theoretical aspects rests upon mathematical proof or falsification. The validation of the 

empirical aspects, on the other hand, rests upon the acceptance or rejection of validation 

criteria on the basis of experimental results. This requires the definition of a validation 

protocol and experiments, which are used to accept or reject the method’s validity, based on 

the chosen validation criteria. 

The theoretical validation is necessary and the literature regarding the theoretical grounds for 

using likelihood ratio methods for forensic evaluation is already abundant [Robertson16]. On 

the other hand, the empirical validation of automatic likelihood ratio methods is an emerging 

area, for which literature has been sparse to date [Haraksim15, Ramos17, Meuwly17]. 

Therefore, this chapter limits its focus to the empirical validation of automatic LR methods. 

In essence, the approach for the empirical validation of automatic LR methods is analogous 

to the one described for the empirical validation of instrumental analytical methods in the 

ISO/IEC 17025:2017 standard. The aim is to establish the scope of validity of the method, 

and to determine the operational conditions under which it meets some performance 

requirements or validation criteria. In its Section 7.2.2, the ISO/IEC 17025:2017 standard 

mentions that validation can be one or a combination of measurements of several 

performance characteristics, such as: 

1. the calibration or evaluation of bias, precision, a systematic assessment of the factors 

influencing the results; 

2. the evaluation of the robustness for variation of controlled parameters; 

3. the comparison of results achieved with other validated methods and the evaluation of 

measurement uncertainty of the results, based on an understanding of the theoretical 

principles of the method and practical experience with the method. 

The note of its Section 7.2.2.3 also provides a definition of performance characteristics: 

“performance characteristics can include, but are not limited to, measurement range, 

accuracy, measurement uncertainty of the results, limit of detection, limit of 
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quantification, selectivity of the method, linearity, repeatability or reproducibility, 

robustness against external influences or cross-sensitivity against interference from 

the matrix of the sample or test object, and bias.” 

2.3 Performance characteristics for automatic LR methods 

Currently, accuracy, discrimination, calibration, robustness, monotonicity2 and generalization 

have been identified as relevant to the validation performance characteristics for the 

assessment of automatic likelihood ratio methods [Meuwly17]. Performance metrics and 

graphical representations are associated with each performance characteristic for the 

measurement and representation of the method’s performance. 

Accuracy, discrimination and calibration have been defined as primary performance 

characteristics, as they relate directly to performance metrics and focus on desirable 

properties of the LR methods. They address the required behavior of the automatic LR 

method if it is intended to be fit for purpose. In [Meuwly17] their selection is based on the 

statistics literature on the evaluation of Bayesian probabilities, and in particular on the use of 

proper scoring rules. 

Robustness, monotonicity and generalization have been identified as secondary performance 

characteristics. They describe how the primary characteristics behave in different conditions 

representing the extreme variability of forensic casework. Factors of variability are usually 

degrading, as e.g. data sparsity, quality of the specimens or mismatch in the conditions 

between training data and operational data. 

2.4 Empirical validation 

Empirical validation is strictly necessary before making use of a new method in practice, 

because of the variability and often low quality of the operational data analyzed, which may 

cause sound LR models to present undesirable behavior. Among the most common degrading 

factors are: data sparsity, high variability of the quality of specimens, a shift between the 

conditions of the data used for LR model training and the data captured in the different 

forensic scenarios, etc. 

 
2
 This was previously referred to as coherence [Haraksim15], but the name was changed for the sake of 

clarity, and in order to avoid confusion with statistical coherence. 



8 

As a central procedure of the validation process, performance measurement requires careful 

definition. In particular, the performance characteristics must guarantee that the likelihood 

ratios are fit for purpose, and that they have desirable properties under operational conditions. 

Some definitions are given here for better understanding of the rest of the chapter3: 

● A performance characteristic represents the answer to the question “What to 

measure?”. It is a characteristic of an LR method that is thought to have an influence 

on the desired or undesired behavior of a given interpretation method. For example, 

we want LR values that help the trier of fact to reach better decisions, and in that 

sense the LR values should possess the performance characteristic defined as 

accuracy4. 

● A performance metric represents the answer to the question “How to measure?”. It 

gives a quantitative measure of a performance characteristic, usually as a scalar. For 

the performance characteristic defined above as accuracy, the performance metric can 

be implemented by the use of proper scoring rules [deGroot82, Gneiting07a] on an 

empirical set of likelihood ratios (see Section 1.4.1). Thus, this performance metric 

will yield a single number that measures accuracy: the lower this number, the better 

the accuracy5, and vice versa. 

● A validation criterion represents the answer to the question “what performance is 

needed to regard a method as valid?”. It is defined as the decision rule to determine 

when a method is acceptable and fit for purpose according to a given performance 

characteristic. For the performance metric accuracy defined above (empirical average 

of a proper scoring rule), a possible validation criterion is a scalar threshold over the 

performance metric. When the metric is above the threshold, the method is not 

validated from the point of view of the accuracy, and vice versa. 

 

2.5 Validation protocol 

The validation protocol begins with a validation plan describing the experiments. This plan 

lists the performance characteristics considered for validation of the method and the 

 
3
 As explained in [Meuwly17], these terms have been defined to be, as much as possible, in accordance with 

relevant ISO standards. 
4
 Here, it can be seen that we define accuracy in terms of proper scoring rules, in contrast to its usual 

definition. See Section 1.4.1.  
5
 As we will see, the average of a proper scoring rule yields a penalty, which is lower when the accuracy is 

better. 



9 

performance metrics and graphical representations used to assess those performance 

characteristics. It also describes the aim of the experiments, the data used and the validation 

criteria applicable. In order to get more insight into the expected performance of the method, 

a comparison with either the current state of the art or with a baseline method can be 

performed, which provides an initial set of validation criteria. 

Experiments are performed in two stages, the first entails the development and validation of 

the method and the second the validation for varying conditions. The development and 

validation of the method uses a training dataset (with a known ground truth) to select the 

automatic LR method, and to refine the parameters of this method and the statistical models 

involved in it. The aim is to measure the primary performance characteristics of the method 

and to obtain the best performance with the most representative dataset for the widest 

possible range of conditions. 

The validation of the developed method for varying conditions consists in measuring its 

performance on a previously unseen set of data captured under forensic conditions (with a 

known ground truth), using both the primary and secondary performance characteristics. The 

aim is to test the automatic LR method under conditions that are as similar as possible to 

conditions in forensic casework, and to arrive at the validation decision. If a dataset is used to 

assign the value of some hyperparameter, which is often the case in the method development 

stage, then the same dataset should not be used to estimate the performance in the validation 

stage. The reason is to avoid a possible inadequate generalization to new data in casework 

(overfitting). The validation experiments in two stages are summarized in the flowchart 

shown in Figure 1. 
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Figure 1. Diagram describing the development and validation stages of the validation 

process. 

 

Table 1. Performance characteristics and examples of performance metrics and graphical 

representations. 

Performance 

Characteristic  

Performance Metrics Examples Graphical Representation Examples 

Accuracy  Empirical average of a proper scoring rule 

for a given prior probability, such as Cllr. 

Prior-dependent representation of a proper 

scoring rule, such as an ECE plot. 

Discrimination  Discrimination component of the empirical 

average of a proper scoring rule for a given 

prior probability, such as 𝐶𝑙𝑙𝑟
𝑚𝑖𝑛or EER. 

Discrimination component of a prior-

dependent representation of a proper scoring 

rule, such as an ECEmin plot or a DET plot. 

Calibration  Calibration component of the empirical 

average of a proper scoring rule for a given 

prior probability, such as 𝐶𝑙𝑙𝑟
𝑐𝑎𝑙 . 

Calibration component of a prior-dependent 

representation of a proper scoring rule, such 

as an ECEcal plot. Also visible in the 

symmetry of a Tippett plot (i.e., cumulative 

histograms). 

Robustness, 

Monotonicity, 

Generalization 

Variation of primary metrics such as Cllr or 

EER, range of LR values. 

Variation of primary representations such as 

ECE, Tippett or DET plots. 
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Table 2. Validation matrix for automatic likelihood ratio methods. 

Performance 

Characteristic 

Performance 

Metrics 

Graphical 

Representation 

Validation 

criteria  

Experiments Data  Results  Validation 

Decision  

For each listed 

characteristic 

As appropriate 

for characteristic 

As appropriate 

for characteristic 

According to 

the definition 

Description 

of the 

experimental 

settings 

Data used  

+/- [%] 

compared to 

the baseline  

Pass / Fail 

 

Finally, the results of the validation experiments are summarized in a validation report, 

recording the decision of acceptance or rejection, depending on whether the experimental 

results meet the validation criteria or not. A validation decision should always be linked to a 

specific set of experimental conditions determining the scope of validity of the method. 

The protocol for the validation of an automatic LR method is summarized in the validation 

matrix as shown in Table 2. Note that all the validation processes, seen as columns of the 

validation matrix in Table 2 apply to each of the performance characteristics (i.e., all the rows 

in Table 1). This might mean that a validation process could end with a “pass” validation 

decision for some characteristics, and with a “fail” validation decision for some others. To 

apply the method in casework (or not) will be the decision of the forensic science institute, 

but the validation report should be transparent and made public. 

The guideline for validation proposed in [Meuwly17] is the first initiative in a long-term 

effort. It will be improved in the future, considering suggestions from others (see e.g. 

[Alberink17]). 

An example of a validation report using development and forensic data can be found in 

[Ramos17]. It is linked to the necessary data used to reproduce the results, in the form of 

empirical sets of likelihood ratios with corresponding ground-truth labels. Interested 

researchers can access the data and follow the set of steps presented in this report, which can 

help them to proceed with the empirical validation of their own methods. 

Moreover, a toolbox for performance assessment is available with the main tools necessary to 

generate the performance metrics and graphical representations needed to validate an LR 

method from an empirical set of LR values. This toolbox is freely available online 

[Perfevtoolbox]. 
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3 Primary Performance Characteristics 

The primary characteristics allow to define the minimum requirements that a LR method 

must satisfy empirically. This section begins with a description of how Bayesian probability 

theory has addressed this problem in other areas outside forensic science, leading to the 

concept of a strictly proper scoring rule as a function to assess the accuracy of probabilities. 

Then, the section describes the decomposition of the accuracy into discrimination and 

calibration, and their main properties. 

The forensic evaluation of observations with regard to propositions is done by the practitioner 

assigning a likelihood ratio [ENFSI15], while the prior probability of propositions is the 

province of the trier of fact. However, the framework proposed to measure performance 

focuses on validation and is based on proper scoring rules, which apply to posterior 

probabilities and thus also depend on the prior probabilities. In a validation process, the 

forensic scientist must demonstrate that the LR method is valid for a wide range of prior 

probabilities. The validation process therefore involves testing the LR method in such a range 

of prior probabilities. To measure the performance of LRs, the associated posterior 

probabilities are assessed by using proper scoring rules. 

It does not suggest that forensic evaluation and reporting should involve assigning prior 

probabilities, but that the LR method should be tested for a wide range of prior probabilities, 

as described in [Meuwly17, Ramos13b]. 

3.1 Performance of probabilities by proper scoring rules 

The assessment of the goodness of probabilistic opinions has been the focus of extensive 

research in statistics since long. According to a widely accepted interpretation of probability 

from a Bayesian perspective, probability is personal [Lindley06], and therefore there is no 

such thing as a true probability or a true likelihood. One can assign a probability distribution 

for some uncertain observation, which might be different from the assignment made by 

someone else, but not necessarily better or worse. The Bayesian perspective also allows for 

subjective assignment of probabilities, as long as the rules of probability are respected, 

making it a coherent probability assignment. 

Although this interpretation of probability proves to be flexible and useful, this does not 

mean that probabilities always lead to accurate actions when used to make decisions. For 
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instance: a person might have a gut feeling that it will not rain the next day, which motivates 

an assignment of a probability of 1% to the event “rain next day”. In accordance with this 

probability value, it is most probable that this person will decide not to take an umbrella the 

next day. However, if it rains the next day, the decision not to take the umbrella is not a 

successful one. Nothing in this example has violated the laws of probability, nor coherence, 

nor the logic of decision-making, but the outcome can rationally make us question the earlier 

probability assessment. 

This fact has motivated the assessment of the goodness of probabilities. In fact, the earliest 

works on this topic addressed the problem of probabilistic weather forecasting [Brier50], 

where an empirical criterion was proposed. Suppose a forecast on whether it will rain the next 

day or not is given by a forecaster every day. We denote 𝐻 ∈ {𝐻𝑟 , 𝐻𝑛𝑟}the random variable 

that represents one of two propositions, taking two categorical values depending on whether 

it rains the next day or not. For a given day 𝑑𝑖, the forecaster assigns a probabilistic forecast 

𝑃𝑖 ≡ 𝑃(𝐻 = 𝐻𝑟|𝑑𝑖). Then, the next day, the true value of the random variable 𝐻 for day 

𝑑𝑖will be known, and will be denoted the ground truth label for that day, as 𝐿𝑖, an observation 

drawn from random variable 𝐿 ∈ {𝐻𝑟 , 𝐻𝑛𝑟}. The empirical measurement of performance 

requires the availability of a database of past forecasts where the ground truth labels are 

known. Empirical measurement has been proposed in the past by the use of a so-called 

proper scoring rule (PSR), in the following way: 

 𝑆 =
1

𝑚
∑ 𝑅(𝑃𝑖, 𝐿𝑖)

𝑚
𝑖=1  (1) 

where S is the average PSR score of the forecaster, and 𝑅(𝑃𝑖, 𝐿𝑖) is the strictly proper scoring 

rule that assigns a penalty to the forecast 𝑃𝑖 depending on the value of 𝐿𝑖. Useful examples of 

proper scoring rules are the quadratic rule and the Brier rule [Brier50]: 

 𝑅(𝑃𝑖, 𝐿𝑖) = (1 − 𝑃𝑖)2   if 𝐿𝑖 = 𝐻𝑟 

 𝑅(𝑃𝑖, 𝐿𝑖) = (𝑃𝑖)2   if 𝐿𝑖 = 𝐻𝑛𝑟, (2) 

and also the logarithmic scoring rule: 

 𝑅(𝑃𝑖, 𝐿𝑖) = −𝑙𝑜𝑔(𝑃𝑖)
2   if 𝐿𝑖 = 𝐻𝑟 

 𝑅(𝑃𝑖, 𝐿𝑖) = −𝑙𝑜𝑔(1 − 𝑃𝑖)2   if 𝐿𝑖 = 𝐻𝑛𝑟. (3) 
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Figure 2 shows both examples of proper scoring rules. It can be seen that, if 𝐿𝑖 = 𝐻𝑟, then it 

rained on day 𝑑𝑖, and therefore the proper scoring rule’s penalty is lower if 𝑃𝑖 ≡

𝑃(𝐻 = 𝐻𝑟|𝑑𝑖) is closer to 1, and vice-versa. As a proper scoring rule is defined here as a 

penalty to a single probabilistic forecast, it penalizes forecasts 𝑃𝑖 more when they are further 

from 1 while 𝐿𝑖 = 𝐻𝑟, or further from 0 while 𝐿𝑖 = 𝐻𝑛𝑟. In other words, forecasters that will 

tend to assign probabilities that are closer to 1 when 𝐿𝑖 = 𝐻𝑟and closer to 0 when 𝐿𝑖 =

𝐻𝑛𝑟will receive a better average PSR score. 

This methodology to measure the performance of probabilistic forecasts also applies in the 

forensic evaluation context. We consider a trier of fact aiming to assign a posterior 

probability 𝑃𝑖 ≡ 𝑃(𝐻 = 𝐻1|𝐸), where 𝐻1 is the proposition that associates the suspect with 

some trace at a crime scene, and 𝐸 are the observations to be evaluated by the forensic 

examiner. As is recommended in [ENFSI15], the posterior probability is obtained from a 

prior probability, province of the trier of fact, and the likelihood ratio from the forensic 

examiner, using Bayes’ theorem: 

 
𝑃(𝐻1|𝐸)

𝑃(𝐻2|𝐸)
=

𝑃(𝐸|𝐻1)

𝑃(𝐸|𝐻2)

𝑃(𝐻1)

𝑃(𝐻2)
= 𝐿𝑅

𝑃(𝐻1)

𝑃(𝐻2)
. (4) 
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Figure 2. Examples of Proper Scoring Rules (PSR): (a) Brier, or quadratic, scoring rule. (b) 

Logarithmic scoring rule (base-2, although other bases could be considered, differing only by 

a scale factor). 

 

If we have a database where the ground truth about the proposition for each of the 

observations in the database is known, we can replicate the weather forecasting performance 

measurement, and evaluate the posterior probabilities using proper scoring rules. The only 

relevant difference between the weather forecasting example and the forensic scenario is that, 

in the forensic evaluation scenario, we aim at measuring the performance of a method used 

by the forensic examiner, who only computes the likelihood ratio in Equation 4. In weather 
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forecasting, the database contains the forecasts, which are equivalent to posterior 

probabilities in forensic science. However, in the validation of forensic methods, we cannot 

have a database of posterior probabilities, because the prior probabilities in Equation 4 are 

generally not known, and in any case, they are not the responsibility of the forensic examiner. 

Thus, in forensic science the equivalent of the database with forecasts is a database of 

likelihood ratios. 

We denote 𝐻 ∈ {𝐻1, 𝐻2} the random variable, taking one of two categorical values 𝐻1or 𝐻2. 

For a given forensic case 𝑐𝑖, with findings 𝐸𝑖 , the forensic examiner will use their LR method 

to obtain 𝐿𝑅𝑖 If the trier of fact would assign the prior probability, then the posterior 

probability 𝑃𝑖 ≡ 𝑃(𝐻 = 𝐻1|𝐸𝑖) could be obtained by Equation 4. In the database of LR 

values, the true value of the random variable 𝐻 for each case 𝑐𝑖 is known, and will be denoted 

the ground-truth label for that case, as 𝐿𝑖 ∈ {𝐻1, 𝐻2}. The empirical measure of performance 

for that database of cases, where posterior probabilities and ground-truth labels are known, 

will then be given by the average PSR score as in Equation 1. 

In order to compute the value of the average PSR score in forensic evaluation, a prior must be 

fixed, because proper scoring rules apply to posterior probabilities. However, it is well-

known that the forensic examiner has no role in assigning the prior, since it concerns 

evidence and information that falls outside their area of expertise. Thus, our proposed 

validation methodology only uses prior probabilities for measuring performance. The 

performance will be dependent on those prior probabilities, and indeed it is observed in 

practice that an LR method, which presents a better average PSR score for a given prior 

probability, could present a bad average PSR score for another prior probability. Therefore, 

the performance of the average PSR score should be measured for a wide range of prior 

probabilities, in order to guarantee that the LR method will perform adequately in a range of 

diverse realistic scenarios. 

Some popular proper scoring rules have been introduced in recent literature. Among them, 

those based on the logarithmic scoring rule have gained popularity, more specifically the 

Empirical Cross-Entropy (ECE) [Ramos13a, Ramos18], and the log-likelihood ratio cost 𝐶𝑙𝑙𝑟 

[Brummer06]. 

ECE is the average PSR score of the logarithmic strictly proper scoring rule, where the cases 

𝑐𝑖, where 𝐻1or H2 is true, are combined with the information of the prior probabilities 𝑃(𝐻 =
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𝐻1) and 𝑃(𝐻 = 𝐻2), respectively. Thus, ECE is a measure of the average penalty that all the 

LRs in the set have. ECE is a prior-dependent measure, and therefore it must be represented 

as dependent on the prior probabilities in forensic science, since those are not the province of 

the forensic examiner. Therefore, ECE is better as it is lower, and the higher its value, the 

poorer the performance. 𝐶𝑙𝑙𝑟 is the value of ECE at the prior probabilities of 0.5, i.e. when 

𝑃(𝐻 = 𝐻1) = 𝑃(𝐻 = 𝐻2) = 0.5, and it can be seen as a summarizing measure of ECE when 

the information about the propositions 𝐻1and 𝐻2is minimum (i.e., maximum prior 

uncertainty). 

The ECE has been represented as a prior-dependent measure by means of ECE plots 

[Ramos13a, Ramos13b]. It therefore measures the performance of LR values as a function of 

the prior probabilities. The 𝐶𝑙𝑙𝑟 also has an interpretation as the average cost for all possible 

prior probabilities, and can be seen as a summarizing measure of ECE in terms of information 

theory [Brummer06, Ramos13a]. Both performance measures have a relevant information-

theoretical interpretation and have been scientifically justified [Ramos18]. 

3.2 Discrimination and Calibration of Probabilities 

An important property of proper scoring rules is that they allow a decomposition of the PSR 

score into two components: a refinement, discrimination, or sharpness component; and a 

calibration component [Murphy87, deGroot82]. Because this decomposition is additive, both 

of these components should be minimized to optimise the performance of the system. This 

performance is measured for an empirical set of posterior probabilities 𝑃𝑖, obtained from a 

database of likelihood ratios and a value of the prior probability where the performance is to 

be measured. In general, we will refer to this decomposition using the following notation: 

 𝑅(𝑃𝑖, 𝐿𝑖) = 𝑅𝑚𝑖𝑛(𝑃𝑖 , 𝐿𝑖) + 𝑅𝑐𝑎𝑙(𝑃𝑖, 𝐿𝑖), (5) 

where 𝑅𝑚𝑖𝑛 is the discrimination component of the penalty according to the proper scoring 

rule, and 𝑅𝑐𝑎𝑙 its component due to calibration. This decomposition can always be considered 

theoretically, and in some particular cases it allows a straightforward closed-form expression 

(see, for example, [deGroot82]). However, this is not the case in general and some 

algorithmic methods have been proposed in recent literature to separate both components, the 

most relevant one being the Pool Adjacent Violators (PAV) algorithm [Brummer06, 

Fawcett07]. 
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In a forensic evaluation using a Bayesian decision framework, posterior probabilities must 

differentiate between different propositions, in the sense that the observations should lead to 

the true proposition by increasing its probability. This property of probabilities has been 

dubbed as refinement [Murphy87, deGroot82], sharpness [Gneiting07b] or discrimination 

[Brummer06, Ramos13b]. Roughly speaking, discrimination is the property that allows to 

separate the sets of posterior probabilities that are obtained when one or the other proposition 

in the case is true. In other words, with findings E for experiments where either H1 or H2 is 

true, P(H1|E) should be higher when H1 is true than where H2 is true. 

Thus, if we compute posterior probabilities for many cases in our development or validation 

database (i.e., by choosing a range of prior probabilities in our experimental set-up), the 

values of 𝑃(𝐻1|𝐸) when H1 is true should overlap as little as possible with the values of 

𝑃(𝐻1|𝐸) when H2 is true. It is this relative overlap between probabilities which defines the 

discrimination. Popular measures of discrimination of probabilities are the Area under the 

Receiver Operating Characteristic curve (Area Under ROC, or AUC) [Fawcett07], the Equal 

Error Rate [Martin97] and the 𝐶𝑙𝑙𝑟
𝑚𝑖𝑛 [Brummer06]. Their corresponding graphical 

representations are Receiver Operating Characteristic (ROC) curves, Detection Error 

Tradeoff (DET) curves and minimum Empirical Cross-Entropy (ECEmin) curves. 

But discrimination is not enough: posterior probabilities must also be reliable [Ramos13b], in 

the sense that triers of fact can rely on them to improve their decisions on average. This 

means they represent the findings that are being evaluated, and the prior probability for which 

the performance is evaluated. However, in this Bayesian context, reliability has a different 

meaning than the classical, frequentist one: in Bayesian statistics, as mentioned earlier, 

probability is personal [Lindley06]. Thus, reliability does not measure closeness to a given 

true probability distribution. The most common property that Bayesian statisticians have 

attributed to reliable probabilities is their calibration [Dawid82, deGroot82], and calibration 

has been used in many works as a synonym of reliability [Dawid82]. According to these 

works, posterior probabilities should not only be more discriminating, but also more reliable 

(in the sense of better-calibrated). If this is the case, probabilities lead the trier of fact to make 

better decisions on average [Ramos13b]. 

Calibration can be defined in many ways, but two definitions have been commonly accepted. 

The first definition is perhaps the most theoretical, and the most general: a method that 

assigns posterior probabilities is perfectly calibrated if, when a posterior probability is 
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assigned using this method, and the method computes a posterior probability again once the 

previous posterior probability has been observed, it will yield the same posterior probability 

[vanLeeuwen13]. This has the immediate implication that, if a posterior probability is 

perfectly calibrated, it will perfectly represent the probability of the propositions given the 

findings, and allows to arrive at better decisions [Robertson16]. 

Another definition of calibration is more empirical, informal and practical. Imagine an 

empirical set of posterior probabilities 𝑃(𝐻1|𝐸), with many cases when H1 and H2 are 

respectively true. Imagine also a subset of posterior probabilities that lay close to a value 𝑘. 

Then, 𝑘′ is computed as the proportion of those probabilities in the subset where H1 is 

actually true. The closer 𝑘 is to 𝑘′ for all values of 𝑘, the better the calibration. For instance, a 

weather forecaster will have a proportion 𝑘′of days with rain for all the days where s/he gave 

the posterior probability 𝑘 of rain forecast. This definition motivates the use of performance 

representations like the so-called empirical calibration curves [Zadrozny02, Cohen04], also 

known as reliability plots, where the values of 𝑘′ (proportion of cases) are represented as a 

function of 𝑘 (probabilities assigned in the empirical set) for a binning of the latter. In these 

representations, calibration will be better if the curve is closer to the diagonal of the plot. See, 

e. g., Figure 3(d). 

Of course, it follows from Equation 5 that perfect calibration does not imply certainty about 

the propositions, because the term due to discrimination still remains in the proper scoring 

rule [Brummer06]. But if the discrimination remains the same, then improving the calibration 

improves performance. 

Following this approach, the performance of probabilities is measured as the average penalty, 

i.e., the empirical average of the proper scoring rule penalties [deGroot82]. Thus, the 

improvement in the accuracy of the decisions made by the trier of fact by a reduction of the 

proper scoring rule penalty may not manifest for a single case, where a single evaluation of 

findings is performed; but it will on average over a large amount of cases. In fact, 

discrimination and calibration do not apply to single probabilities, or to single cases, but to 

averages over empirical sets. 
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3.3 Performance of likelihood ratios 

As mentioned earlier, the validation process is aimed at the likelihood ratios given by a 

forensic method, not at posterior probabilities. The reason is that a forensic examiner cannot 

assign the prior probability, leaving that task to the trier of fact. However, LR methods that 

are going to be validated for their use in casework must be validated for a wide range of prior 

probabilities. This is because an LR method might pass the validation criterion for some prior 

probabilities, but not for others. There are several solutions to this issue, from the point of 

view of the validation process: 

● The performance of likelihood ratios can be measured for a wide range of prior 

probabilities. Thus, LR methods that perform according to their validation criterion 

for the whole range of analyzed prior probabilities will be validated. This is done 

using prior-dependent performance representations of likelihood ratios, such as ECE 

plots (and the corresponding calibration and discrimination components, ECEmin and 

ECEcal), ROC curves and DET plots. 

● The performance of likelihood ratios can also be measured for a single, summarizing 

prior probability; or as an average over prior probabilities. Thus, those methods will 

give a single scalar measure that summarizes the performance for all the prior 

probabilities. This is done using e.g. the 𝐶𝑙𝑙𝑟 (with its corresponding discrimination 

and calibration components 𝐶𝑙𝑙𝑟
𝑚𝑖𝑛d 𝐶𝑙𝑙𝑟

𝑐𝑎𝑙), the EER and the AUC. 

The properties discussed above for probabilities easily extend to LRs, since the posterior 

probability is simply the product of the LR and a (fixed) prior probability. Therefore, the LR 

and the posterior probabilities share the same information if the prior is fixed. This can be 

proved using e. g. theorems of information theory [Cover06] related to the so-called data-

processing inequality. Thus, an empirical set of LRs also presents the two properties 

determining the performance of a set of posterior probabilities: discrimination and 

calibration. 

3.4 Properties of well-calibrated likelihood ratios 

Calculating the LRs without mistake is necessary but, perhaps surprisingly, not sufficient for 

the numbers obtained to have the properties LRs should have. When used to update the prior 

probability ratio, on average LRs have to decrease the uncertainty about the hypotheses. If 
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this property is observed on large set of LRs, then the method is deemed to produce ‘well-

calibrated’ LRs. A method producing ‘well-calibrated’ LRs would help, on average, the trier 

of fact to optimally reach a decision on the issue in a case. Numbers presented as LRs - from 

here on ‘reported LRs’ - can have any degree of performance. Reported LRs are not always 

helpful for the trier of fact, whereas calibrated LRs are, on average. 

The above should make clear that anyone considering using LRs should also be interested in 

the performance of those LRs. This not only shows whether a trier of fact can expect to 

benefit from the system at all, it can also help the forensic practitioner choose between 

different systems. For forensic scientists that attempt to improve a system’s performance, it 

can help to assess the improvement achieved [Berger12]. 

The performance of an automatic system that generates LRs is limited for a variety of 

reasons. It can be due to blatant mistakes, but more often the laws of probability theory are 

followed and other factors are limiting performance. Limiting factors can be e.g. modelling 

assumptions, or databases that are never perfectly representing the population of interest 

because of their size or nature. For example, the database may be of studio recordings of 

speech but the system may be used to compare voices on tapped phone calls. 

LRs have a specific probabilistic interpretation: they represent strength of evidence. Apart 

from discrimination (the low degree of overlap of LRs under either hypothesis), the values of 

the LRs themselves are important. We can consider the LR reported by a system (or person), 

as evidence E for our own evaluation. This evidence is interpreted, as always, by considering 

the probability of obtaining the evidence if either hypothesis is true: 

 𝐿𝑅 =
𝑃(𝐸|𝐻1)

𝑃(𝐸|𝐻2)
=

𝑃(𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝐿𝑅|𝐻1)

𝑃(𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝐿𝑅|𝐻2)
. (6) 

If the reported LR is equal to LR, the result of our own trusted evaluation, then the calibration 

of the system is ideal. Ideal calibration means that our assessment of the evidential value of 

the reported LR agrees with the assessment of the evidence by the system. A system with 

ideal calibration thus reports LRs that fully capture the evidential strength of the observation, 

such that this original observation can be replaced by its LR. This means that the 

interpretation of the original observation gives the same result as the interpretation of the 

reported LR. Or, in other words, for ideal calibration the LR of the reported LR is equal to the 
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reported LR. But if the calibration is not ideal, the reported LRs will be misleading more 

often than better-calibrated LRs [Dawid82, Cohen04, Brummer06, Ramos13a, Ramos18]. 

An empirical observation is that, if the discrimination of an empirical set of LR values 

increases, the strength of evidence of well-calibrated LRs also tends to increase [Ramos13b]. 

This agrees with common sense: an LR method with better discrimination (for instance, DNA 

analysis) should yield higher strength-of-evidence than an LR method with lower 

discrimination (for instance, forensic voice comparison). This happens if the set of LR values 

is well-calibrated, but not necessarily otherwise. In [vanLeeuwen13], a proof of this property 

is given for equal-variance Gaussian distributions of the scores of speaker recognition 

systems. 

3.5 Examples with primary performance characteristics 

In this section several examples are given of performance metrics and graphical 

representations related to primary performance characteristics. The following performance 

metrics will be used for 3 sets of LR values produced by 3 simulated systems:  

● Accuracy: 𝐶𝑙𝑙𝑟 [Brummer06], ECE [Ramos13a, Ramos18]. 

● Discrimination: 𝐶𝑙𝑙𝑟
𝑚𝑖𝑛rummer06], ECEmin [Ramos13a], AUC [Fawcett07], EER 

[Martin97]. 

● Calibration: 𝐶𝑙𝑙𝑟
𝑐𝑎𝑙 [Brummer06], ECEcal [Ramos13a, Ramos18]. 

Also, the following graphical representations are shown: 

● Accuracy: ECE plot [Ramos13a, Ramos18]. 

● Discrimination: ROC curve [Fawcett07], DET curve [Martin97]. 

● Calibration: Empirical calibration plot [Zadrozny02]. 

It is out of the scope of this Chapter to give a thorough interpretation of these performance 

measures, and interested readers can find further details in the indicated references. However, 

a brief description of their interpretation is given in relation with performance. 

The histograms in Figure 3(a) show the explicit empirical distribution of log(LR) values for 

either hypothesis being true. These graphical representations do not explicitly measure 

performance, but show the degree of overlap as a measure of discrimination. They also give 

some indication of the calibration of the log(LR) values, since they should be centered around 
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log(LR) = 0 if they are well-calibrated [vanLeeuwen13]. The cumulative version of these 

histograms is the Tippett plot [Meuwly00, Lucena-Molina15]. 

The DET and ROC graphs (Figures 3b and 3c respectively) are measures of discrimination. 

The closer the curves are to the top-left corner of the graph for ROC curves, and to the origin 

for the DET curves, the better the discrimination. The AUC is a summarizing measure of 

discrimination that integrates the whole ROC curve, the higher the better. Its equivalent is the 

𝐶𝑙𝑙𝑟
𝑚𝑖𝑛[Brummer06, Fawcett07], for which lower values represent better discrimination. The 

EER is a point-summary of the discriminating power, the lower the better. However, the 

calibration is not visible in these measures, as can be seen from the fact that Set 1 and Set 3 

present similar DET and ROC curves (Figure 3b, c), but very different calibration (Figure 4). 

The empirical calibration graph in Figure 3(d) gives a measure of calibration based on its 

empirical definition. It shows the relation between the proportion of cases where H1 is true 

and the posterior probability of H1, and takes the proportion of cases where H1 is true as prior 

probability (named empirical prior). The set of LR values is well-calibrated when the data 

points approach the diagonal. This representation does not take into account discrimination. 

The example shows that Set 2 has the best-calibrated set of LR values, when the DET and 

ROC graphs show that it is also the least discriminating (Figure 3b, c). This example also 

shows that discrimination and calibration are two essential and complementary performance 

characteristics for the validation of LR methods. 
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Figure 3. Some popular and useful performance metrics and graphical representations: (a) 

Histograms, (b) DET plots with EER, (c) ROC curves with AUC, (d) empirical calibration 

plots. 

The ECE plots in Figure 4 give the performance as a function of prior probabilities. The 

accuracy (solid curve, ECE) is plotted with the loss of accuracy due to imperfect 

discrimination (dashed curve, ECEmin) and to imperfect calibration (difference between both, 

ECEcal). The lower the corresponding ECE curve the better the performance. The plots also 

show the ECE of a non-informative system, such as the tossing of a coin (short-dash curve). 

They demonstrate that the LR method can produce results better than the non-informative 

system in some ranges of prior probability, while worse in other ranges. The scope of validity 

of the method increases with the range for which the method performs better than the level of 

chance. Finally, the values of Cllr, 𝐶𝑙𝑙𝑟
𝑚𝑖𝑛 and 𝐶𝑙𝑙𝑟

𝑐𝑎𝑙are the ECE values at the prior log10 (odds) 

value of 0 (i.e., y-axis).  
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These performance metrics and graphical representations are examples of the many that could 

be included in this validation framework based on proper scoring rules [Meuwly17]. 

 

Figure 4. Empirical Cross-Entropy (ECE) plots with Cllr, 𝐶𝑙𝑙𝑟
𝑚𝑖𝑛d 𝐶𝑙𝑙𝑟

𝑐𝑎𝑙, based on the same sets 

of LR values as Figure 3. The “After PAV” curve label refers to the ECEmin curve, since 

ECEmin is the ECE obtained after the application of the PAV algorithm. 
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4 Secondary Performance Characteristics 

The secondary characteristics describe how the primary metrics behave in different situations, 

such as typical forensic casework conditions (e.g. differing quality of the training data and the 

trace material). The aim of secondary performance characteristics is to assess the 

performance of the LR method in forensic casework. Therefore, secondary performance 

characteristics are mainly assessed at the stage of validation for varying conditions (see 

Figure 1). However, if necessary or if possible, they could also be used in the stage of 

development and validation of the method. 

The secondary performance characteristics are related to a single primary performance metric 

or a single graphical representation. Thus, we talk about e.g. the robustness of the accuracy, 

of the discriminating power or of the calibration. 

We define the proposed secondary performance characteristics LR-based forensic evaluation 

methods as follows: 

4.1 Robustness 

The robustness of an LR method is the ability of the method to maintain the value of a 

primary performance metric when the data changes. For instance, Method A is more robust to 

a lack of data than Method B if, as the data gets more sparse, the primary performance metric 

of Method A degrades less than the same metric for Method B. In the LR context, robustness 

usually refers to the stability of the performance of LR methods to varying conditions (e.g. 

quality/quantity of the data). 

4.2 Monotonicity 

The monotonicity6 of an LR method is defined as the ability of the method to yield LR values 

with better performance when increasing the intrinsic quantity/quality of the data. Examples 

are the number of minutiae in a fingermark or the signal-to-noise ratio in a voice recording. 

4.3 Generalization 

 
6
 In [Meuwly17, Haraksim15, Ramos17], this property has been named coherence. However, it has been 

decided to change its name in order to not confound it with the statistical coherence of subjective 

probabilities. 
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The generalization of an LR method is the ability of the method to maintain its performance 

for previously unseen data (even when the quality/quantity of the data is the same). An LR 

system for speaker identification for example, could be used for recordings of the same 

quality and quantity but in a different language. 

5 Conclusion 

Many automatic methods have been developed to compute the strength of evidence, 

particularly for the forensic evaluation of genetic and biometric traces. But there is currently 

no standard for the validation of such forensic evaluation methods. This book chapter 

summarizes the first steps taken in the direction of the validation of forensic automatic 

likelihood ratio methods. Many more steps, and the involvement of the forensic community 

are necessary to further develop this multidisciplinary and complex matter. 
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