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In the investigation of arson, evidence connecting a suspect to the fire scene may be 

obtained by comparing the composition of ignitable liquid residues found at the crime 

scene to ignitable liquids found in possession of the suspect. Interpreting the result of 

such a comparison is hampered by processes at the crime scene that result in 

evaporation, matrix interference, and microbial degradation of the ignitable liquid.  

Most commonly, gasoline is used as a fire accelerant in arson. In the current 

scientific literature on gasoline comparison, classification studies are reported for 

unevaporated and evaporated gasoline residues. In these studies the goal is to 

discriminate between samples of several sources of gasoline, based on a chemical 

analysis. While in classification studies the focus is on discrimination of gasolines, for 

forensic purposes a likelihood ratio approach is more relevant. 

In this work, a first step is made towards the ultimate goal of obtaining 

numerical values for the strength of evidence for the inference of identity of source in 

gasoline comparisons. Three likelihood ratio methods are presented for the 

comparison of evaporated gasoline residues (up to 75% weight loss under laboratory 

conditions). Two methods based on distance functions and one multivariate method 

were developed. The performance of the three methods is characterized by rates of 

misleading evidence, an analysis of the calibration and an information theoretical 

analysis. 

The three methods show strong improvement of discrimination as compared 

with a completely uninformative method. The two distance functions perform better 

than the multivariate method, in terms of discrimination and rates of misleading 

evidence. 
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1. Introduction 

At the Netherlands Forensic Institute, procedures for forensic gasoline (residue) 

comparison have developed from concluding in terms of the probability of same 

source or different source to concluding in terms of a likelihood ratio (LR) as a 

measure for the strength of evidence. A LR is assigned based on the comparison of a 

chromatographic analysis of a sample containing gasoline traces found at a crime 

scene and a sample containing gasoline traces found in connection to a suspect. 

A likelihood ratio is defined as the ratio of the probability of the evidence 

given each of two competing hypotheses (for references in the forensic literature, see 

[1-7]). For example, it is reported that the observed (dis)similarities in the 

chromatograms are much more probable when the gasolines share a common source 

than when they are from different sources (the sources will be defined later). In 

forensic science, as a matter of convention, the prosecution hypothesis (here: same 

source) features in the numerator of the LR, while the defense hypothesis (here: 

different source) features in the denominator of the LR. 

The present study is part of a research program to develop computer-based 

methods for forensic gasoline comparison resulting in a numerical LR. Computer-

based methods may assist expert judgment by providing LRs that are transparent and 

have a clear empirical foundation in the training databases used. In this program a 

number of steps will need to be taken before the methods are suitable for application 

in forensic casework. In the current paper, evaporated gasoline residues are compared 

with other evaporated gasoline residues and unevaporated gasolines. Taking into 

account evaporation is a first step towards application in casework. In future steps the 

influence of the matrix and microbial degradation of gasoline residues found at crime 

scenes [8] will need to be taken into account. 

1.1 The likelihood ratio framework for evidence evaluation 

Presenting the strength of the evidence as a likelihood ratio is in concordance with the 

role of an expert witness in court, and leaves room for the other actors (judge, jury and 

other witnesses) to make their contributions. The general framework for application of 

a LR revolves around Bayes’ theorem. When applied in a forensic setting, it dictates a 

connection between the odds of the two competing hypotheses (the prosecution and 

the defense hypothesis) prior and posterior to the taking into account of new evidence, 

and the strength of that new evidence as given by a LR. The odds of the hypotheses 

(the domain of the trier of fact) are dependent on all evidence and information, while 

the expert only has relevant information about the evidence within his field of 

expertise. An expert witness contributes to a trial by providing information about the 

probability of the evidence in the expert’s domain (i.e. (dis)similarities in 

chromatograms for a gasoline comparison) under the two hypotheses. The ratio of 

these two probabilities is the likelihood ratio. The LR has values between 0 and 

infinity. Values smaller than 1 support the defense hypothesis (Hd), and values larger 
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than 1 support the prosecution hypothesis (Hp) [1-7,9]. A value of 1 represents neutral 

evidence. Larger LRs give stronger support for Hp and LRs closer to zero give 

stronger support for Hd. 

A LR approach is new to the field of gasoline comparison. Previous studies of 

evaporated gasoline residue comparison approach the problem as a classification 

problem. In these studies, samples of several sources of gasoline are prepared and it is 

studied whether numerical techniques can group gasolines from the same source. 

There is an important difference between a classification approach and a LR approach. 

Classification methods make categorical decisions based on the comparison only, 

while a LR provides the evidential value of the comparison result. The latter allows 

for logical combination with other evidence and information, and thus allows the trier 

of fact to decide based on all information available, while the former does not. 

1.2 Comparison of evaporated gasoline residues 

Even though the usefulness of classification studies for forensic purposes is limited, 

they do provide relevant information on which features of the chromatogram to use 

for a LR approach. We will therefore briefly describe a number of classification 

studies. 

Some early work has been done on discriminating gasolines from different 

sources by fluorescence spectroscopy [10,11], but for most of these approaches the 

chemical composition is identified by gas chromatography (GC) [12-17]. This is done 

for a number of gasoline samples for which the amount of evaporation is varied under 

laboratory conditions. A first approach, pioneered by Mann [14,15] was based on 

analyzing chromatographic peak area ratios of volatile compounds. The use of volatile 

compounds limited the method to gasolines that were no more than 50% evaporated. 

This method was extended by Barnes et al. [12] to the qualitative comparison of a 

selection of peak area ratios including peaks at longer retention times and samples up 

to 75% evaporation. Peak area ratios (4 to 6 depending on the amount of evaporation 

under consideration) were selected based on minimal variation within a gasoline 

sample for varying amount of evaporation, and good discrimination between gasoline 

samples. 

A second approach combines GC with statistical methods in order to reduce 

the dimensionality of the chromatogram data. In this approach the data is described by 

fewer variables than peaks in the chromatogram, while capturing a considerable 

amount of variance in the data. Sandercock & Du Pasquier [17] used principal 

component analysis and linear discriminant analysis to discriminate samples up to 

90% evaporation. They used the C0 to C2 naphtalene composition (11 late-eluting 

peaks in the chromatogram) as input for statistical analysis. In their study, 35 samples 

of gasoline (each evaporated to 0, 25, 50, 75, and 90%) were found to form 18 groups 

in a linear discriminant analysis; 11 of these contained a single gasoline, while the 

other 7 groups contained 2 to 6 gasolines. 

Recently, Petraco et al. [18] studied the performance of a variety of 

multivariate statistical techniques in order to discriminate between 20 retained liquid 
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gasoline samples from fire investigations. They selected 15 peaks from the 

chromatogram as input for statistical analysis. The 15 peaks were selected based on 

their consistent vapor pressure up to 75% evaporation. In order to create groups, a 

number of replicated measurements were made per gasoline. 

1.3 Scope of the present study 

In the present study the goal is to obtain numerical values for LRs calculated for the 

comparison of evaporated gasoline residues to other evaporated gasoline residues and 

unevaporated gasolines. Three methods to calculate LRs are presented. The methods 

differ in the features used to discriminate between gasoline residues and in the 

statistical approach used to obtain LRs. Two of them build on the literature on 

classification of evaporated gasoline residues and the forensic statistical literature. 

The third comparison method has not been published previously in the literature on 

gasoline comparison. 

The contribution of this paper is twofold. 1. Introduce the LR-approach to the 

field of forensic gasoline comparison. 2. Take a first step in the creation of computer-

based methods in order to assign an evidential value to gasoline comparisons for 

forensic purposes, by accounting for evaporation. 

2. Materials and methods 

2.1 Hypotheses 

In this work source level hypotheses are addressed [19]. Different-source gasoline 

samples are defined as either coming from different petrol stations or from the same 

petrol station that has been refilled in the meantime. Same source gasoline samples 

come from the same petrol station and refill. The definition of the same source and 

different source hypotheses in this way is in accordance with the experience of 

forensic experts on gasoline comparison at the NFI: gasoline at the tank of a petrol 

station is relatively stable in between refills. 

In casework however, the relevant source of gasoline is at the person level. 

This is because different people who have collected gasoline from the same tank and 

refill are considered as different sources by the court. While gasolines from these 

persons should be considered as from a different source in casework, they are defined 

as from the same source in our dataset. 

In order to obtain a more relevant dataset for casework, a survey of gasoline 

samples at people’s homes would be preferred. However, for the current purpose of 

assessing and comparing the performance of three different LR-methods the current 

dataset is appropriate. It is not the goal of the present work to obtain a LR-method to 

be used in casework, but to show the feasibility of LR-methods for the comparison of 

evaporated gasolines. 
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2.2 Data 

Samples of gasoline were obtained by repeatedly collecting samples at 15 petrol 

stations in the region of The Hague in the Netherlands. At a petrol station gasoline 

was collected at one or two fuel pumps. When two fuel pumps were used, Euro 95 

gasoline was collected from one fuel pump, and a high octane grade gasoline was 

collected from the other. The time between each sampling was one week or more and 

it was checked that in between two collections the fuel pumps had been refilled. 

Samples were collected from July to October 2009 (189) and in July 2010 (29) and 

September 2010 (29). The high octane grade fuels contained 7 types of gasoline. The 

15 petrol stations were of 9 different brands: BP, Esso, Gulf, Shell, Tamoil, Tango, 

Texaco, Tinq, and Total. A total of 258 samples of gasoline were collected. 

Evaporated samples (126) were prepared from 42 of the 258 unevaporated 

gasolines, by evaporation of unevaporated gasoline samples in the laboratory. 

Evaporation was continued until residuals contained 75%, 50% or 25% by weight. 

Half of the evaporated gasolines were Euro 95 gasoline, the other half were high 

octane grade gasolines. 

The chemical composition of all of the samples was analyzed by gas-

chromatography. An Agilent 6890N gas chromatograph equipped with an FID 

detector and an Agilent 7683 Series autosampler were used. FID detection was chosen 

for reasons of good reproducibility and robustness. In comparison to MS, the main 

advantage is that FID detection is more stable over time. The use of an FID detector 

allows for the comparison of a dataset of chromatograms that have been measured 

over a time span of a few years. The column consisted of 25 meter fused silica with an 

internal diameter of 0.20 mm and a methyl silicone stationary phase (Ultra 1) of 0.33 

µm thickness. The initial temperature after injection was 50°C, and temperature was 

ramped with 2°C/min up until 160°C. Subsequently the temperature was increased to 

250°C by 30°C/min in order to elute high-boiling contaminants. 

An automated procedure was used to integrate peaks in the chromatograms in 

order to obtain the integrated area by compound. An automated integration procedure 

is included in the Chemstation software package (Rev. A.09.03 (1417)) used to obtain 

the chromatograms. The areas computed by the automated procedure are dependent 

on the position of the baseline and the presence of shoulders from co-eluting 

compounds. Some of the compounds eluted as resolved baseline separated peaks, but 

others had shoulders from co-eluting compounds or eluted in unresolved multi-

component peak patterns. Consistency in the reconstruction of the baseline by the 

integration algorithm, when integrating repeated measurements, is critical. The more 

complex the peak pattern, the harder this task gets. 53 peaks were selected that 

showed consistency in the reconstruction of the baseline and minimal variation in 

repeated measurements. These were mainly baseline-separated peaks, or peaks with 

only small shoulders. Peak-areas were calculated for these compounds and these were 

retained for further analyses. 

From this data, three datasets were created: 
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1. A training data set of evaporated gasolines was created from 22 of the 42 

gasolines used for evaporation. These gasolines were each evaporated to 

approximately 25, 50, and 75% by weight, leading to 66 samples. 

2. A validation dataset of evaporated gasolines was created from the 

remaining 20 gasolines used for evaporation. These gasolines were each 

evaporated to approximately 25, 50, and 75% by weight, leading to 60 

samples. 

3. The data from the 258 unevaporated gasolines were used as background 

dataset. For the multivariate method, the probability density over the 

feature space for the population of gasolines was estimated from this 

sample. Moreover, for different source comparisons, pairs of gasolines to 

be compared consisted of one from the background dataset and one from 

the training or validation dataset. 

2.3 Selection of stable ratios 

As suggested by the literature on classification studies for evaporated gasoline 

residues, selection of stable peak area ratios was adopted. A peak area ratio is the ratio 

of the areas of two peaks in a chromatogram. From the training dataset all peak area 

ratios were calculated and 13 peak area ratios were selected that showed little 

variation within a gasoline for the four evaporation levels, as compared with variation 

between gasolines of the background data. The procedure to select the peak area ratios 

follows below. 

Area ratios were calculated for all peak pairs and a parameter 'F (which is 

similar to an F-statistic) was calculated for each peak area ratio R. An F-statistic 

would have calculated the ratio between the variance of a peak area ratio within 

gasolines and between gasolines. Instead of calculating an F-statistic, the peak area 

ratios were standardized by the mean peak area ratio within a gasoline (averaged over 

evaporation levels). This was done for two reasons. 1. Peak area ratios vary 

substantially over gasolines, and it is desired to have a number which is independent 

of the size of the peak area ratio. 2. Random measurement error is proportional to the 

value of the peak area ratio, so that the division operation standardizes this error. 

This resulted in the following statistic for a peak area ratio R, 

  
  Ri j i

ij

sd

R

R

R

mn
RF 




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
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1
1

1
' . (Eq. 1) 

Here, n denotes the number of gasolines in the training dataset, and m denotes the 

number of evaporation levels, ij denotes gasoline i with evaporation level j. iR  

denotes the mean peak area ratio of gasoline i over evaporation levels j. Whereas the 

term on the left is the (scaled) within standard deviation, the term on the right is the 

inverse of the (scaled) between standard deviation. Rsd  is the standard deviation of 

peak area ratio area R over the background data. R is the mean of R over the 
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background data. Peak area ratios were selected to minimize 'F , while making sure 

that a peak occurred only once in the selected ratios. If a peak would occur more than 

once in the selected ratios, the discrimination of the peak area ratios would be less due 

to a dependency of the peak area ratios. Keeping F’ below 0.05, 13 peak area ratios 

were retained. 

Table 1 gives an overview of the compounds whose areas were used in the 

ratios. Note that for the numerator and denominator of the peak area ratios, peaks with 

similar retention indices (for a definition, see [20]) were selected by the automated 

procedure. This is explained by the relation between retention time and vapor 

pressure. Selection of compounds with similar vapor pressure (and thus retention 

time) will result in ratios that are relatively independent of the level of evaporation. 

The stability of the peak area ratios as a function of evaporation level may be assessed 

from  

 
 

 

Fig. 1. It shows that as a function of evaporation level, all averaged normalized 

peak area ratios (first normalized to the ratio at 0% evaporation and subsequently 

averaged over gasolines) remained well within 10% of the value at 0% evaporation. 

Also note that most peak area ratios showed a slightly decreasing trend as a function 

of evaporation level. This may be explained by the fact that in all selected peak area 

ratios the numerator is a compound with a shorter retention time than the 

denominator. Since in general retention times are positively correlated with vapor 

pressure it may be expected that compounds with shorter retention times evaporate 

faster, yielding a decrease in the value of the ratios as a function of evaporation level. 

However, the peak area ratio selection procedure was optimized to select the peak 

area ratios that are most stable with respect to evaporation. 

Note that the peak area ratios plotted in  
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Fig. 1 are the peak area ratios selected based on the evaluation of Eq. 1. This 

equation evaluates peak area ratios not only on minimum variation within a gasoline, 

but also relative to the variation between gasolines. Peak area ratios that showed 

relatively large variation in  

 
 

 

Fig. 1 also had large variation between gasolines. 
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2.4 LR formulas 

The LR is defined as 

  
 
 
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Or for continuous data 
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where f denotes a probability density. 

The numerator of this equation is the probability density of observing the 

evidence E when pH is true. The denominator of this equation is the probability 

density of observing the evidence E when dH is true. In forensic LR-methods, distance 

(or similarity) measures between the features of the compared items are often used as 

the evidence. In that case, probability distributions of distances under pH  and dH are 

obtained from a data set of distances. In the present paper, the dataset under pH  

consists of data from gasoline pairs that have the same source. The dataset under dH  

consists of data from gasoline pairs that have different sources. A LR is evaluated at 

distance d as, 
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where x and y denote the vector of features to be compared of gasoline X and Y and 

 yx,d  is the distance function. 

 

The distance function based on selected ratios, d1 

For the first distance function 1d  (based on the 13 selected ratios), when comparing an 

x% evaporated gasoline (denoted for peak area ratio j as %jxR ) to an unevaporated 

gasoline (denoted for peak area ratio j as %0jR ), d1 is defined as 

   
13 2

1 % 0%

1

log / .jx j

j

d R R


   (Eq. 5) 

The following reasoning was applied to arrive at this distance function: For a 

same-source gasoline comparison, ratios %jxR  and %0jR  are approximately equal and 

division standardizes the random component of the measurement error. The use of the 
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square of the logarithm ensures that the distance function is indifferent to the order of 

comparison (i.e. using %0% / jjx RR  or %%0 / jxj RR ) and a log transformation makes the 

method more robust to outliers. Several other distance functions based on the 13 ratios 

were explored and the present one was found to discriminate best. 

 

The distance function based on trends in vapor pressure, d2 

The second distance function 2d was based on the observation that compounds that are 

more volatile generally have shorter retention times than less volatile compounds. 

This is due to a strong correlation between retention time and vapor pressure. Thus, 

the ratio of the area under a peak in a chromatogram of an evaporated gasoline to the 

area for a same-source unevaporated gasoline is smaller for peaks with shorter 

retention times (see 

 
 

 

Fig. 2). 

When comparing the chromatograms of two gasolines, if a ratio for a peak at 

shorter retention time is found to be larger than a ratio for a peak at later retention 

time, this provides evidence for the two gasolines coming from a different source. 

This observation motivates the following distance measure for peak j and peak i at 

shorter retention time (RTi < RTj). 

 
2( 1)  for y 1, andij ij ijd y    (Eq. 6a) 

 0 for y 1,ij ijd    (Eq. 6b) 
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where 
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y  . The peak areas a of peak i and peak j of a x% evaporated 

gasoline are denoted by %ixa  and %jxa  while the peak areas a of peak i and j of a 0% 

evaporated gasoline are denoted by %0ia  and %0ja . 

The distance function d2 is given by 

 
 ijd

n
d

1
2

, (Eq. 7) 

where n is the number of ijy that were larger than 1. Note that n may vary over 

gasoline comparisons. Its function is to suppress the contribution of many (and small) 

ijd  due to measurement error when a same-source gasoline comparison involves 

gasolines with approximately equal evaporation levels (for example when comparing 

the 0 and 25% evaporated gasolines of 

 
 

 

Fig. 2). 

For both distance methods, kernel smoothing was performed on the 

distributions of distances using a Gaussian kernel. The criteria used to select the 

kernel bandwidth were (a) a good visual correspondence between the kernel density 

and the histogram in the region of overlap between the two distributions and (b) a 

resulting transformation function from score to LR that is monotonously decreasing. 

The values for the kernel bandwidth for d1 are: h = 0.020 (same source) and h = 0.026 
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(different source). The values for the kernel bandwidth for d2 are h = 0.0057 (same 

source) and h = 0.0060 (different source). 

 

Multivariate distribution method 

The third approach for the calculation of LRs was to model the probability 

distributions of characteristics directly and calculate the probability density for joint 

occurrence of characteristics x  and y given the two hypotheses, 
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 (Eq. 8) 

In contrast to the probability distributions based on distance methods, these 

probability distributions are multivariate in nature. Therefore, we call this approach 

the multivariate distribution method [4]. Following this approach, a LR based on the 

ratio of the two probabilities of all selected variables (in this case two times 13 peak 

area ratios) occurring under the two competing hypotheses was used. The probabilities 

of the peak area ratios within the same source were assumed to follow a multivariate 

Gaussian distribution. For this LR method a covariance matrix is estimated to model 

the within source variation. In order to estimate stable within source and between 

source probability densities, dimension reduction was performed by principal 

components analysis (PCA). PCA was performed on the correlation matrix of the 

background data. The PCs with eigenvalues larger than one were retained in the 

subsequent LR calculations. This amounts to 3 PCs explaining 79% of the variance. 

The covariance matrix was estimated by a mean within covariance S, 
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 (Eq. 9) 

where n denotes the total number of gasolines, and m the total number of evaporation 

levels. The vectors ijy  contain the scores for the 3 PCs for gasoline i with evaporation 

level j. 

Since the selection of the ratios was done by minimizing variances of the 

training data, the training data cannot be used to reliably estimate the within 

covariance matrix. Therefore the validation data were also (apart from calculating 

LRs) used to estimate the mean within source covariance matrix and the following 

validation protocol was used. 

For same-source comparisons a leave-one-out cross-validation scheme was 

used. For a particular gasoline pair a mean covariance matrix was estimated from the 

other 19 groups of gasolines in the validation dataset. For different source 

comparisons the mean covariance matrix was estimated using all 20 groups of 

gasolines from the validation dataset. This is appropriate since for different-source LR 
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calculations the background database was used, which is not involved in estimation of 

the mean within-source covariance matrix. 

For estimation of the probability distribution of different-source gasolines an 

empirical distribution was used, which was smoothed with multivariate kernel density 

estimation [21]. LR formulas may be found in the appendix. 

3. Results 

For the LRs based on distance functions, distances were obtained by comparisons of 

gasolines from the training dataset to the background dataset. For same-source 

comparisons, a distance was computed for a comparison of each 25, 50, or 75% 

evaporated gasoline from the training data to its unevaporated counterpart from the 

background data. This amounts to 66 distances for same-source comparisons. 

Distances for different-source comparisons were computed for comparisons of each 

25, 50, or 75% evaporated gasoline from the training data to each different gasoline 

from the background data. This amounts to 16962 (22 × 3 × 257) distances for 

different-source comparisons. 

 

 

Fig. 3a and 3b show histograms of distributions of same-source and different-

source gasoline comparisons for both distance functions. The y-scale of the graphs is 

optimized to show the probability density of different source comparison distances. 

The scale of the insets is optimized to show the histograms of the same-source 

comparisons. The lines show the kernel density approximations, which follow the 

empirical distributions. Both distance methods show little overlap between different 

and same-source comparisons, reflecting good discrimination properties. Most mass 

of the density of same-source comparisons is concentrated at small distances, whereas 

the density of different-source comparisons shows a much larger spread. For d1 some 

same-source comparisons have larger distances, leading to a wider profile as 

compared to the same-source distribution of d2. 

LRs were calculated for the validation data. For same-source gasoline 

comparisons, each 25, 50, and 75% evaporated gasoline from this dataset was 

compared to its unevaporated counterpart from the background dataset. This amounts 

to 60 LRs for same-source comparisons. It would be convenient to have (much) more 

data available, but the work of preparing samples is quite substantial. For different-

source comparisons, each 25, 50, or 75% evaporated gasoline from the validation 

dataset was compared with each different gasoline from the background dataset. This 

amounts to 15,420 LRs for different-source comparisons. 

Multivariate LRs were also calculated for same-source and different-source 

gasoline comparisons. In order to reliably estimate the covariance matrices, PCA was 

used as a dimension reduction technique. Fig. 4 shows the PC scores for the validation 

data (black) and the background dataset (open circles). A clustering is observed for 

the same type of gasoline, but at different evaporation levels. The clustering is much 

stronger than the variation in the background population, indicating good 
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discrimination properties of the multivariate LR method. The distribution of the 

validation data is similar to the distribution of the background data, reflecting that the 

validation data is a sample from the background data. Note that for the validation data 

evaporated gasolines were used and that those ratios were selected with the goal to 

suppress the effect of evaporation. 

Fig. 5 compares the LRs for same-source comparisons of the three LR 

methods by showing a plot of the proportion of same-source comparisons that have 

log10 LRs larger than the value on the x-axis. For the multivariate method, the 

majority of comparisons yielded LRs in the range 10
2
 to 10

5
. The median value was 

about 9 × 10
3
. The two distance methods gave comparable results and yielded LRs in 

the range of 10
2
 to 10

4
 (median LR for the distance function for trends in vapor 

pressure (d2) was 3.1 × 10
3
, and median LR for the distance function for 13 ratios (d1) 

was 2.7 × 10
3
). 

The fraction of misleading evidence for same-source comparisons (yielding 

LR < 1) varied for the three methods, as may be seen from Fig 5. The multivariate 

method yielded most misleading evidence (13.3%). Distance method d2 had three 

occurrences of misleading evidence (5.0%), method d1 yielded one occurrence of 

misleading evidence (1.7%). 

The large proportion of misleading evidence for d2 is a surprising result. It is 

caused either by the presence of a few outliers in the same-source validation data, or 

conversely by the lack of such data in the tail region of the same-source training data. 

Since no experimental changes were made in the collection process of the validation 

and the training data, and the training data was not used for variable selection for d2, 

the only reasons to account for this are the sampling process or the selection of the 

kernel bandwidths. 

The LR-values for the multivariate method were more strongly misleading 

than those for the distance methods. The relatively large rate of misleading evidence 

for same-source comparisons for the multivariate distribution method may be 

explained by the modeling assumptions intrinsic to this method. Distributions with 

identical means are assumed for same-source gasolines. This may not be the case 

when comparing evaporated gasolines to unevaporated gasolines. Although the ratios 

were selected for their stability with respect to evaporation, small deviations as a 

function of evaporation level were observed. This may lead to deviations in means 

large enough to yield very strongly misleading evidence. 

An inspection of the same-source comparisons that resulted in misleading 

evidence showed that the three LR methods were rather consistent. For one same-

source comparison, all three methods yielded misleading evidence. For the same-

source comparisons for which the multivariate method yielded misleading evidence, 

the other two methods yielded LRs which were among the smallest in their series. 

An overview of misleading evidence for different-source comparisons 

(LR > 1) is given in Table 2. For all three methods the overall fraction of misleading 

evidence was smaller than 1%. It was largest for the multivariate LR method, whereas 

it was smallest for the distance function based on trends in vapor pressure (d2). 
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For d1 the rate of misleading evidence for the different comparisons is larger 

than for d2. This difference may be explained by the larger number of peak pairs 

involved in the second distance function. For this method, all combinations of two 

peaks may contribute to the distance. This amounts to 1378 peak pairs (although the 

contributions of the peak pairs are not independent), as compared with 13 peak pairs 

involved in the ratio methods. Since more information is likely to be contained in the 

larger amount of peak pairs used for d2, this may explain the better performance of the 

LR method for different comparisons for d2. From this perspective, it is reassuring 

that d1 performed so well, with only 13 ratios included. The inclusion criteria for 

selection of ratios were chosen to find the optimal performing ratios. Apparently, this 

selection procedure worked rather well. 

For both distance methods the majority of misleading evidence for different-

source comparisons had LRs between 1 and 100 (71% for d2 and 80% for d1). For the 

multivariate distribution method, such LRs were roughly evenly distributed on a 

logarithmic scale between 1 and 10
5
. 

Inspection of the different-source comparisons for which strongly misleading 

evidence was obtained revealed that most of these gasoline pairs were collected within 

2 weeks at different pumps. The occurrence of strong similarities between a few 

gasolines in the dataset is not surprising since some of the petrol stations used for 

sample collection were serviced by the same tanker. Therefore, strong similarities 

between some samples are expected. 

3.1 Assessment of calibration 

A LR is defined as the ratio of two probabilities (or probability densities). A LR 

method gives calibrated LRs if the probability distributions are modeled accurately. 

For the two distance functions the probability distributions were estimated from 

empirical data using kernel density estimation. For the multivariate LR-method a 

statistical model was assumed for the within distribution (a multivariate normal 

distribution) and the between distribution was estimated from empirical data by kernel 

density estimation. 

Calibration of assigned probabilities may be assessed by comparing a 

calculated probability by the relative frequency of this probability in a test data set. If 

the relative frequency is equal to the estimated probability, the probability estimate is 

well calibrated. A graphical measure of such an assessment is called an empirical 

calibration plot [22], where estimated probabilities are plotted as a function of 

observed relative frequencies. 

In order to assess the calibration of the LRs, the following relation [23] is 

helpful, which is only true for perfect calibration: 
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This equation is analogous to the definition of the LR in Eq. 2, the difference being 

that the LR is also interpreted as the evidence in the right hand side of the equation. 

Since the LR contains all important information about the evidence relevant for the 

discrimination between Hp and Hd, Eq. 10 holds. This implies that when a method 

claims to output LRs (denoted as method-LRs), then generating a series of method-

LRs under Hp and Hd, calibrating them and plotting the calibrated LRs as a function of 

method-LRs yields a line y = x. Given that the latter calibrating process has been 

performed well, deviations from this line denote that method-LRs are not properly 

calibrated. This property will be exploited below. 

In order to extrapolate a LR-method beyond its training data, the property of 

calibration should hold for the LRs of the validation data. In order to measure 

calibration for the validation data, LRs for this data may be calculated and calibration 

may be assessed by assessing whether Eq. 10 holds for this set of LRs. 

As an empirical calibrating method for the method-LRs for the validation data of 

the three different methods under study, the PAV algorithm (originally developed to 

find posterior probabilities in [24], adopted to find LRs in [25] ) was used. This 

algorithm transforms method-LRs into calibrated LRs for the present dataset under the 

constraint of monotonicity. Monotonicity means that larger method-LRs are 

associated with larger calibrated LRs. The algorithm uses ordered method-LRs (all Hp 

and Hd method-LRs are used in one sequence) as input and bunches them so that the 

ratio of Hp to Hd method-LRs in one bunch results in a stepwise increasing number 

over the bunches. These ratios are subsequently set equal to posterior odds and 

converted to LRs using Bayes’ rule and the fact that the prior odds are defined by the 

ratio of the number of data under Hp and Hd. These prior odds are determined by the 

conditions of the experiment. Since the posterior odds obtained by the PAV algorithm 

are equal to the LR × prior odds, division of the PAV result by the prior odds gives 

the desired result. When method-LRs are invariant under this transformation, 

calibration for the method-LRs was already perfect and a plot of transformed LRs 

versus method-LRs should yield a line close to the line y = x. 

Figure 6 shows the PAV transformation results for the three different methods. 

The PAV transform is the stepwise increasing line in the plot. As a visual aid, the line 

y = x is plotted in the Figures. For the first distance method the PAV transform is 

plotted in Fig. 6a. It shows that the line y = x is followed quite closely in the region 

from log method-LRs 1 to log method-LRs 4. Therefore, in this region calibration is 

good. Log method-LRs of -2 to 1 are transformed to a log PAV calibrated LR of 0.5, 

which shows that calibration is bad. For log method-LRs smaller than -2 and larger 

than 4 calibrated LRs are not supported due to the lack of data under Hp on the left 

hand side and under Hd on the right hand side. 

In Figure 6b the PAV transform for the LR method based on the second distance 

method is shown. It shows the same trend as for the first method, except that the 

region of small method-LRs for which calibration is bad is extended. The region now 

goes from log method-LR -7 to 1. It is not surprising that the limits on the left hand 

side for the two methods (-2 and -7) coincide with the smallest method-LRs obtained 
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under Hp in Fig. 5. These are the smallest method-LRs that can be transformed by the 

PAV algorithm. 

Figure 6c shows the PAV transform for the multivariate method. Note that small 

method-LRs have very bad calibration, log method-LRs of -15 being transformed to 

0.5. Also note that calibration is off for the complete range of log method-LRs 

from -15 to 5. Log method-LRs from 2 to 5 are transformed to values roughly two 

orders of magnitude smaller. That calibration is further off for the multivariate 

distribution method as compared with the distance methods may be explained by the 

use of a statistical model for the within distribution (a multivariate normal model) as 

compared with the empirical models that were used for the methods based on distance 

functions. For the multivariate model, the empirical distributions may not follow a 

multivariate normal distribution. Moreover, for the parameter estimation a mean 

within covariance matrix was used, which may deviate from the (hypothetical) 

covariance matrix for individual gasolines. 

3.2 Measuring performance by an information theoretical approach 

In order to further investigate the performance of the three methods, a measure based 

on information theory was used. This measure is the Empirical Cross-Entropy (ECE), 

which has been proposed as a measure to analyze the performance of LR-methods 

(see e.g. [26]). ECE has been applied to characterize LR-methods in [22,26-30]. A 

detailed description of how to use ECE and the PAV algorithm to measure the 

performance of other physicochemical data may be found in [31]. The ECE measures 

the accuracy of probability statements by applying a logarithmic scoring rule. The 

further the probability is from predicting the ground truth, the larger the cost, with no 

upper bound. The lower bound is defined by the cost for perfect predictions (e.g. 

probability assignments of 1 for Hp as the ground truth and 0 for Hd as the ground 

truth). In this case the ECE yields 0. 

As was noted above, the ECE measures the accuracy of probability statements. 

In order to apply the ECE to LR-methods, a specification of the prior probability is 

mandatory. Because we don’t know the prior probability this is solved by calculating 

the ECE for the LR-method over a range of prior probabilities and plotting the ECE as 

a function of prior probability. The advantage of this approach is that it is in 

accordance with the roles of the actors in court, where the role of the expert is to 

communicate the likelihood ratio of the evidence and the prior probability is the 

province of the other actors. 

An advantage of the logarithmic scoring rule is that it is a strictly proper 

scoring rule. This means that in an ECE plot, the performance can be separated in a 

part measuring the discrimination and a part measuring the calibration, given that the 

calibrating procedure used preserves the discrimination properties. The discrimination 

properties are preserved because a monotonous transform for the LR to calibrated-LR 

is expected. 

LRs are said to be well calibrated when both probabilities (in the numerator 

and the denominator) are assigned accurately. When one or both of these probabilities 
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do not correspond to the proportions in the sample, this will result in a larger ECE. In 

order to measure the calibration loss, the LRs of the validation data may be 

(re)calibrated using their frequency of occurrence under Hp and Hd. The PAV-

algorithm incorporated in the ECE analysis is a calibration method. The ECE score 

after such a calibration is a measure of the discrimination. 

Apart from a curve showing the ECE of the LR-method and a curve showing 

the ECE of a method calibrated on the validation data, the ECE-plot also shows a 

curve for uninformative evidence, where the LR always equals one. This may be used 

as a benchmark for minimal performance of the LR-method. Note that for LR-

methods with bad calibration, the LRs produced may be worse than uninformative 

LRs. 

In Fig. 7 the ECE plots are shown for the three methods. In (a) the ECE plot 

for the first distance method (based on the selected ratios) is shown. The solid curve 

represents the ECE of the LR-method, while the dotted line represents the ECE of 

LRs equal to one. The dashed curve represents the ECE of the method where the 

calibration is optimized for the validation data by application of the PAV algorithm. 

The ECE of the LRs produced by the LR-method (solid curve) is much smaller than 

the ECE of uninformative LRs. After PAV calibration, the performance is improved 

further, showing that the KDE fitted on the training data is not optimal for the 

validation data. 

ECE curves for distance method 2 (based on trends in evaporation) are shown 

in Fig. 7b. Note that the performance of this method strongly depends on the prior 

odds. For negative log prior odds, performance is good, while for positive log prior 

odds a large ECE is obtained, even much larger than for uninformative LRs. This 

large outcome is explained by the presence of three misleading LRs that are very 

small while Hp is true, which are also visible in Fig. 5. For positive prior log odds 

these misleading LRs give a large contribution to the ECE. 

After PAV transformation, the ECE improves drastically. The ECE is small in 

the whole plotting range, and comparable to the ECE of the PAV calibrated LRs for 

the first distance method in Fig. 7a. Therefore, the discrimination of the distance 

methods is comparable. 

ECE curves for the multivariate distribution method are shown in Figure 7c. 

The same trend is visible as in Fig. 7b, but even more pronounced. This is due to four 

even more strongly misleading LR values under Hp. Fig. 5 shows that the four same-

source comparisons yield LR values smaller than 10
-10

. Three of these originate from 

comparisons between 75% evaporated gasolines and their unevaporated counterparts, 

while the other one is from a 50% evaporated gasoline (and its unevaporated 

counterpart). Possibly, the strongly misleading LRs may be explained by the larger 

amount of evaporation for these samples. This explanation is supported by Fig. 1 

where it is shown that deviations of the normalized average ratio are strongest for 

75% evaporation. The PCA factor scores used in the multivariate normal approach are 

composed of these ratios. The multivariate normal distribution is dependent on the 

difference in PCA scores, and larger differences lead to smaller probabilities under Hp 

and therefore smaller LRs. Note that after calibration of the LRs of the validation data 
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by PAV the ECE improves dramatically, showing the potential of the method. 

However, the PAV calibrated curve is not as low as for the two distance methods, 

showing that the two distance methods have superior discrimination. 

3.3 Comparison of gasoline residues from gasolines that are both 

evaporated 

Finally, it was also investigated whether application of the three methods could be 

extended to the comparison of two evaporated gasolines. For this purpose LRs were 

calculated for same and different-source comparisons of 25% evaporated gasolines to 

50 and 75% evaporated gasolines. The validation dataset was used for this purpose. 

The use of this dataset is equivalent to 40 same-source and 760 different-source 

comparisons. 

Results were in accordance with the results on evaporated-to-unevaporated-

gasoline LR-results described above. Median values of the LRs for same-source 

comparisons were 3 × 10
3
 for the two distance methods and 1.0 × 10

4
 for the 

multivariate method, which were typical values found for same-source gasoline 

comparisons of evaporated to unevaporated gasolines. The amount of misleading 

evidence for same-source comparisons was 5.0% for method d2 and the multivariate 

distribution method while it was 2.5% for method d1. The rate of misleading evidence 

for different-source comparisons was 0.52% for method d1, 0.66% for method d2, and 

0.13% for the multivariate distribution method. 

ECE plots for the three methods are shown in Fig. 8. They show the same 

trends as for the comparison of evaporated to unevaporated gasolines. Again, method 

d1 (based on the selected ratios) performs better than the other two LR-methods. The 

solid line of Fig 8a. is markedly lower than the line for LR =1 always, while for the 

other two methods in a major part of the graph the solid line is above the line for 

uninformative evidence in a major part of the graph. For the three methods the 

discrimination (dashed line) is comparable, which is in line with the reported similar 

median values of the LR under Hp and the rates of misleading evidence. 

4. Discussion 

The results show the potential of three LR methods to calculate LRs for evaporated 

gasoline comparisons, showing good discrimination behavior when an unevaporated 

gasoline is compared with a gasoline evaporated under laboratory conditions. The 

methods can also be applied to the comparison of residues of two evaporated 

gasolines. Two distance function based methods were developed and a third method 

modeling of the multivariate distribution of features was applied. This is a first step 

towards the development of automated methods in order to calculate LRs for gasoline 

residues found in casework. Following steps are to incorporate the effect of the matrix 

material on which the gasoline sample was found and microbial degradation, and to 

collect data in accordance with hypotheses used in casework. 
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Another benefit of collecting new data is the complete disentanglement of 

validation and training datasets. In the current experimental setup, disentanglement 

was pursued but was not perfect. For pragmatic reasons, the background dataset of 

unevaporated gasolines was used for multiple purposes. It was used in the selection of 

stable peak area ratios, for calculating distances for different-source comparisons and 

for the different-source distribution of the multivariate method. This may lead to 

overoptimistic results, since the background data was used in the training phase as 

well as in the validation phase. However, this bias in the results is expected to be 

small. Since independent sets of evaporated gasolines were used for training and 

validation, and these are paired with the background dataset to model and calculate 

LRs for different source comparisons, a possible bias in the outcome of the different-

source comparisons is expected to be small. 

A validation dataset was used to assess whether the developed methods 

generalize over gasolines. It was observed that the distance methods generalize better 

than the multivariate method, in terms of calibration. The PAV calibration results 

showed that the multivariate LRs were miscalibrated over the entire range, while the 

distance methods showed miscalibration for LRs smaller than 1. In terms of 

discrimination the distance methods outperformed the multivariate method. 

In other fields (e.g. chromatographic comparison of MDMA profiles [4]) it has 

been observed that a multivariate distribution method performs superior to distance 

methods. The multivariate distribution method contains all information about the 

distributions while distance measures reduce the information. For gasoline 

comparisons, the discrimination of the multivariate distribution method was worse. 

This may be explained by the fact that the distance methods were designed to deal 

with the effect of evaporation while the multivariate distribution method was not. The 

multivariate distribution method assumes multivariate normal distributions with 

identical means for same-source gasoline comparisons. It has been observed that this 

assumption does not hold for evaporated gasolines, since the values of the selected 

ratios showed a trend as a function of evaporation (although they were selected to 

minimize this effect). This means that values of features of evaporated gasolines vary 

as a function of evaporation level, and are not identical when comparing gasolines at 

different evaporation levels. This may explain the relatively large rate of misleading 

evidence under Hp, and the lack of calibration of the multivariate distribution method. 

The methods presented leave room for improvement. One example is the 

addition of a different number of ratios in ratio selection. Using more ratios may lead 

to better discrimination, but worse calibration. This is because better discriminating 

methods should yield larger LRs and more data is required to calibrate larger LRs. 

Using less ratios may lead to the reverse effect (better calibration at the cost of 

discrimination). In the present study the number of ratios was determined independent 

of these properties, by keeping F’ below 0.05. 

Another example is a refinement of the method based on trends in vapor 

pressure. The retention time is strongly correlated with vapor pressure, but the 

correspondence is not one-to-one. If all compounds are identified and vapor pressures 



21 

are known, the order of compounds could be based on vapor pressure directly instead 

of retention time as an indirect measure. 

Further, it is noted that there is an intrinsic difference between the methods 

based on ratio selection and the method based on trends in vapor pressure. The former 

use symmetric functions whereas the latter uses an asymmetric distance function. This 

means that for the latter method the order of comparison is of importance: peak areas 

of the strongest evaporated gasoline are scaled by peak areas of the least evaporated 

gasoline. Thus, one has to determine which of the two gasoline residues under 

comparison is evaporated furthest in order to apply the LR method based on trends in 

vapor pressure. In a laboratory setting this knowledge is obvious, but this information 

may not be readily available in a case comparison, for example when gasoline residue 

found at the bottom of a jerry can at the suspect is also strongly evaporated. 

Furthermore, a remark needs to be made about the evaporation levels 

involved. The methods presented in this work are currently limited to 75% evaporated 

samples. The question remains whether this maximum evaporation level suffices for 

casework. It would be interesting to be able to know the level of evaporation for 

gasoline residues in casework. To our knowledge, little work has been published in 

the literature on the subject of estimation of evaporation levels of gasolines. Hirz & 

Rizzi report accurate simulation of chromatogram data of evaporated gasolines up to 

30% evaporation [32], and this may be used as a starting point to study the level of 

evaporation of gasoline residues. Extension of this approach to levels of evaporation 

higher than 30% has - to our knowledge - not been reported. 

It is possible to extend the present analysis by, for example, inclusion of 90% 

evaporated gasoline samples. This was done for the distance method based on trends 

in vapor pressure. It was found that LRs for same source comparisons became small 

(1 < LR < 50). Also, for the ratio selection methods, it was observed that inclusion of 

90% gasoline samples resulted in the exclusion of the first half of the compounds 

(with small retention times) in the ratios selected. This was interpreted as an undesired 

feature, since it reduces the discrimination properties of the gasoline comparison, and 

therefore it was decided to retain gasolines up to 75% evaporation. Future work on 

comparisons involving gasolines spiked on matrices will be more in accordance with 

casework. Matrices spiked with gasolines are left to evaporate for a time 

representative of casework. Validation of the methods on data of gasolines on 

matrices may provide insight in whether this maximum level of evaporation is 

sufficient. 

5. Conclusion 

To our knowledge, this study is the first one on the calculation of numerical LRs for 

evaporated gasoline comparisons. In this paper three LR methods were developed for 

a forensic comparison of an evaporated to a reference gasoline. The methods were 

validated for gasolines evaporated under laboratory conditions up to 75% evaporation. 

The three methods behaved well in terms of discrimination and rates of misleading 

evidence. The multivariate distribution method underperformed in comparison to the 
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two methods based on distance functions, possibly due to the fact that the assumption 

of identical means for same source gasoline comparisons does not hold. In terms of 

calibration, the multivariate method performed worst, giving miscalibrated LRs over 

the entire range, while the distance method based on ratio selection showed the best 

calibration properties. 

In conclusion, it is possible to design LR-methods that discriminate well between 

same-source gasolines and different-source gasolines when gasolines have been 

partially evaporated. Future work will be aimed at extending the methods for 

application in forensic casework. 
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The vectors x and y denote features of gasolines X and Y. The vector iz denotes the 

features of a gasoline i from a background sample Z. Matrix 0T denotes the covariance 

of the background sample, while in this work yx SS  is the mean within covariance 

as defined in Eq. 9. The number of repeated measurements of X and Y are denoted by

xn and yn  (which are both 1 in this case) and m is the number of gasolines in the 

background sample. The parameter h is the optimal kernel bandwidth as defined in 

[21]. For a derivation of the formula, see [33] and references therein. 
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List of tables 

 

 

 

 

Table 1. Compounds used in the 13 ratios, retention indices and values for F’ 

Ratio nr.  

in  

 
 

 

Fig. 1 

Numerator RI Denominator RI F' 

1 1,3,5-trimethylbenzene 954.0 1-methyl-2-ethylbenzene 963.2 0.0120 

2 2,2,4,5,6-pentamethylheptane 1026.8 1-methyl-4-

propylbenzene 

1038.5 0.0160 

3 n-nonane 900 isopropylbenzene 910.1 0.0181 

4 1,2,3-trimethylbenzene 1005.6 1-methyl-3-

isopropylbenzene 

1007.7 0.0209 

5 1-methyl-3-propylbenzene 1035.6 1,3-dimethyl-4-

ethylbenzene 

1062.1 0.0214 

6 1,2,4,5-tetramethylbenzene 1101.0 1,2,3,5-

tetramethylbenzene 

1103.9 0.0247 

7 2-methylhexane 661.2 trans-1,3-

dimethylcyclopentane 

680.1 0.0296 

8 1,3-diethylbenzene 1032.6 1,2-dimethyl-4-

ethylbenzene 

1068.4 0.0311 

9 2-methylheptane 760.4 trans 1,4-di-Me- 772.7 0.0358 
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cyclohexane 

10 2,4-dimethylhexane 728.5 trans,cis-1,2,4-

trimethylcyclopentane 

734.9 0.0361 

11 2,2,5-trimethylhexane 781.3 trans-1,2-

ethylmethylcyclopentane 

787.1 0.0375 

12 2,4-dimethylheptane 827.3 ethylbenzene 844.7 0.0451 

13 cis-1,4-dimethylcyclohexane 802.7 trimethylcyclopentene 805.8 0.0495 

 

 

 

 

Table 2. Overview of rates of misleading evidence for different-source 

comparisons (%) for the three LR methods. 

LR method dist 13 ratios trends evap multivariate 

1 < LR < 10 0.337 0.110 0.188 

10 < LR < 100 0.182 0.162 0.233 

100 < LR < 1000 0.071 0.065 0.292 

1000 < LR < 10
4
 0.052 0.039 0.123 

10
4
< LR < 10

5
 0.006 0.006 0.045 

total 0.649 0.383 0.882 
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Figures 

 

 
 

 

Fig. 1. Values of normalized (to 0% evaporation) ratios of peak areas in a 

chromatogram, averaged over gasolines and as a function of evaporation level. 
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Fig. 2. Plot of relative peak areas in a chromatogram of 25, 50 or 75% evaporated 

gasoline, relative to peak areas in the chromatogram of the unevaporated gasoline. 

Compounds are ordered by increasing retention time. 
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Fig. 3. Histograms of distances for the distance function based on (a) selected ratios 

and (b) trends in vapor pressure. The lines are the kernel smoothed densities. 
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Fig. 4. PC scores plot for the validation dataset (black) and the background dataset 

(open circles) for the first two PCs. 
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Fig. 5. A plot showing the proportion of same source comparisons with LRs larger 

than the value on the x-axis, for the three methods. 
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Fig. 6. PAV transforms of LRs of the validation data for (a) the distance function 

based on selected ratios, (b) the distance function based on trends in vapor pressure, 

and (c) the multivariate method.  
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Fig. 7. ECE plots for (a) the distance function based on selected ratios, (b) the 

distance function based on trends in vapor pressure, and (c) the multivariate method. 

  



36 

 
 

 
 

 
 

Fig. 8. ECE plots for LR-data of comparisons of gasoline residues that are both 

evaporated, (a) the distance function based on selected ratios, (b) the distance function 

based on trends in vapor pressure, and (c) the multivariate method. 


